
Considering theory in the design of CS education infrastructure:
Three framings of computational thinking

Chris Proctor
cproctor@stanford.edu
Stanford University
Palo Alto, California

ABSTRACT
The development of computer science (CS) education infrastructure
at the K12 and university level has largely sidestepped theoretical
questions, positioning traditional cognitive approaches to computa-
tional thinking as unproblematic. This presentation considers how
recent work organizing the theory space of computational thinking
(into cognitive, situated, and critical computational thinking) might
influence the nature of K12 CS education research questions and
infrastructure used for teaching and assessing learning. An analysis
of Unfold Studio, a platform for middle- and high-school literacy-
based computer science education, illustrates how infrastructure
could support theoretically-grounded pedagogy and research.

CCS CONCEPTS
• Social and professional topics→ K-12 education.

KEYWORDS
Computational thinking, literacy, pedagogy, programming
ACM Reference Format:
Chris Proctor. 2019. Considering theory in the design of CS education
infrastructure: Three framings of computational thinking. In SPLICE: Com-
puting Science Education Infrastructure: From Tools to Data, August 11, 2019,
Toronto, Canada. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
The questions of what should be taught in K12 computer science
education and how have been coalescing around the concept of
computational thinking [4, 13]. These have been contested issues.
Some have argued for the importance of a unified approach to K12
CS education [1], while others have suggested that computational
thinking has expanded to the point of incoherence [2]. The devel-
opment of CS education infrastructure at the K12 and university
level has largely sidestepped the question, positioning traditional
cognitive approaches to computational thinking as unproblematic.
In this presentation, we summarize recent work organizing the
theory space of computational thinking, present a case study of a
K12 CS education project explicitly positioned with respect to these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLICE ’19, August 11, 2019, Toronto, CA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

framings, and reflect on how CS education infrastructure cold be
developed with attention to various framings of what computer
science learning looks like.

2 THREE FRAMINGS OF COMPUTATIONAL
THINKING

The idea of atheoretical infrastructure is tempting. Nelson and Ko
[7] argue that while theory can be generative in CS education de-
sign research, theory can also impede progress in three ways: (1)
research attention can be divided between creating better designs
and generating theory, (2) reliance on general educational theory
could detract from developing CS-specific theory, and (3) theory
bias in peer review could unfairly privilege some research. Kafai,
Proctor, and Lui [6] argue against the implicit suggestion that de-
sign research for computing education could choose to do without
educational theory. Educational theory can play productive roles in
design, such as organizing the search space of possible designs and
as a heuristic, but theory also plays an essential role in defining
the outcomes of educational research and practice. Design con-
jectures hypothesize relationships between tools, curriculum, and
pedagogies the visible manifestations of mediating processes such
as observable behaviors and learner-produced artifacts. Theoretical
conjectures, in turn, hypothesize the relationship between these
and outcomes such as various conceptions of learning [11].

Kafai, Proctor, and Lui [6] propose a framework to organize the
theory space of computational thinking: cognitive, situated, and
critical. Cognitive computational thinking focuses on individual
learners and considers learning in terms of specified skills, com-
petencies, and knowledge. Situated computational thinking sees
learning as distributed in communities of practice, and considers
learning in terms of participation and identity development. Critical
computational thinking considers the role of learning in hierarchi-
cal power relationships across society, and considers learning in
terms of action oriented toward justice. These framings represent
different units of analysis, epistemological commitments, and stake-
holders in K12 education. (Recent calls to reframe computational
thinking as computational literacy [3, 5, 9] are based in the recogni-
tion that the construct can span these framings.) Recognizing these
perspectives will be a necessary step to integrating CS into K12
education [8], and to broadening access at the university level.

3 OPERATIONALIZING THEORY IN UNFOLD
STUDIO

Over several years of a design-based research process, Proctor and
Blikstein [9] developed Unfold Studio, a free open-source web ap-
plication for interactive storytelling, designed to support critical

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SPLICE ’19, August 11, 2019, Toronto, CA Chris Proctor

computational literacies. The web application was developed in
conjunction with pedagogical strategies and curriculum designed
to support students in representing, analyzing, and sharing their
lived social experiences. The curriculum is centered around writer’s
workshop (open-ended writing/programming on topcis of students’
choice) with periodic mini-lessons introducing computational con-
cepts as they become relevant and interesting to students. Un-
fold Studio was also designed as a research instrument to answer
questions spanning the three framings of computational thinking
presented above. The following subsections explain how research
questions are grounded in each of the three framings of computa-
tional thinking and how the application is instrumented to answer
the questions.

3.1 Cognitive: How well did individual
students learn to program?

A cognitive view of computational thinking will be primarily inter-
ested in individual students’ competencies. Sequential code snap-
shots produce diffs showing the progress of individual stories. Each
diff is composed of ops, additions, deletions, and changes to adjacent
lines. Classifying ops and diffs allows assessment of the complexity
of student code, as well as the student’s ability to correct errors.
Additionally, the curriculum unit features several assessments of
programming skill. Students are asked to implement several puz-
zles, and are given pseudocode showing the author’s intent and a
broken story, and asked to fix it (based on the Fairy performance
assessment [12]).

3.2 Situated: How did participants draw on
literacy practices in developing
computational thinking skills?

A situated view of computational thinking will be interested in
the extent to which students participate in a community produc-
ing and consuming computational artifacts–using computational
thinking in personally-meaningful ways for a real audience. Similar
to Scratch, Unfold Studio allows users to see each other’s shared
stories, love stories, collect stories in books, and follow other users
via an activity feed. The question of which interactions are compu-
tational, or at least which affect students’ trajectories of learning
computational thinking, can be answered by associating participa-
tion data with performance on the assessments described in the
previous section, grounded by qualitative analysis of what students
are writing and their accounts of why. Furthermore, social network
analysis can show how practices such as using certain syntactic
structures, spread through the community.

3.3 Critical: How did participants connect
classroom literacy practices to their
broader literacies via identity and voice?

A critical view of computational thinkingwill be interested in the ex-
tent to which students are able to deploy computational thinking as
a resource in their existing literacy practices. Does computational
thinking help them get respected at school, help them navigate
multiple in-school and out-of-school identities, or help them deal
with inequities related to gender, race, and social class? Here, the

development and uptake of individual stories is particularly impor-
tant. Qualitative analysis of successive story versions, backed by
students’ commit messages reflecting on their writing, shows the
ways in which students bring these concerns into the classroom
and make rhetorical use of the computational media to position
themselves, introduce new perspectives, and challenge stereotypes.
Logs of other students’ interactions with these stories, including
the sequence of choices they made as they played them, serve as
evidence that these texts have an impact on changing the local
culture. For example, Proctor and Garcia [10] analyze how a high
school author helps her peers understand the dynamics of peer
sexual pressure by strategically presenting players with choices.

4 DISCUSSION
This talk illustrates cognitive, situated, and critical views of compu-
tational thinking, showing how the infrastructure of Unfold Studio
supports research questions framed in each view. It also argues
that developers of K12 CS education infrastructure ought to con-
sider how they frame computational thinking, and the kinds of data
they collect and present. Infrastructure operationalizes theoretical
constructs, regardless of whether this they are acknowledged. One
of the difficulties in sharing K-12 curriculum has historically been
that different schools serve very different populations, and have
different kinds of educational goals. As we continue the important
work of developing scalable infrastructure and sharable ontologies
for curriculum, it would be valuable to be explicit in articulating
theoretical stance.

REFERENCES
[1] Valerie Barr and Chris Stephenson. 2011. Bringing computational thinking to

K-12: what is Involved and what is the role of the computer science education
community? Inroads 2, 1 (2011), 48–54.

[2] Peter J Denning. 2017. Remaining trouble spots with computational thinking.
Commun. ACM 60, 6 (2017), 33–39.

[3] Andrea A DiSessa. 2001. Changing minds: Computers, learning, and literacy. Mit
Press.

[4] Shuchi Grover and Roy Pea. 2013. Computational Thinking in K–12: A Review
of the State of the Field. Educational Researcher 42, 1 (2013), 38–43. https:
//doi.org/10.3102/0013189X12463051

[5] Sharin Rawhiya Jacob, Mark Warschauer, University of California, Irvine, and
University of California, Irvine. 2018-08-24. Computational Thinking and Literacy.
1, 1 (2018-08-24). https://doi.org/10.26716/jcsi.2018.01.1.1

[6] Yasmin B. Kafai, Chris Proctor, and Deborah Lui. 2019. From theory bias to theory
dialogue: Embracing cognitive, situated and critical framings of computational
thinking for K-12 CS education. In Proceedings of the 2019 ACM Conference on
International Computing Education Research (ICER ’19). ACM, New York, NY, USA.
http://chrisproctor.net/publications/kafai_2019_theory_dialogue

[7] Greg L. Nelson andAndrew J. Ko. 2018. OnUse of Theory in Computing Education
Research. In Proceedings of the 2018 ACM Conference on International Computing
Education Research (ICER ’18). ACM, New York, NY, USA, 31–39. https://doi.org/
10.1145/3230977.3230992 event-place: Espoo, Finland.

[8] Chris Proctor, Maxwell Bigman, and Paulo Blikstein. 2019. Defining and designing
computer science education in a k-12 public school district. 7.

[9] Chris Proctor and Paulo Blikstein. 2019. Unfold Studio: Suporting critical literacies
of text & code. Information and Learning Science 1, 2 (2019).

[10] Chris Proctor and Antero Garcia. 2019. Student voices in the digital hubbub.
In Giving student voice due weight: Possibilities and challenges in USA and New
Zealand, L Hogg and K Stockbridge (Eds.). http://chrisproctor.net/publications/
proctor_2019_voice

[11] William Sandoval. 2014. Conjecture mapping: An approach to systematic educa-
tional design research. Journal of the learning sciences 23, 1 (2014), 18–36.

[12] Linda Werner, Jill Denner, Shannon Campe, and Damon Chizuru Kawamoto.
[n.d.]. The fairy performance assessment: measuring computational thinking in
middle school. In Proceedings of the 43rd ACM technical symposium on Computer
Science Education (2012). ACM, 215–220.

[13] Jeannette M. Wing. 2006-03. Computational Thinking. Commun. ACM 49, 3
(2006-03), 33–35. https://doi.org/10.1145/1118178.1118215

https://doi.org/10.3102/0013189X12463051
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.26716/jcsi.2018.01.1.1
http://chrisproctor.net/publications/kafai_2019_theory_dialogue
https://doi.org/10.1145/3230977.3230992
https://doi.org/10.1145/3230977.3230992
http://chrisproctor.net/publications/proctor_2019_voice
http://chrisproctor.net/publications/proctor_2019_voice
https://doi.org/10.1145/1118178.1118215

	Abstract
	1 Introduction
	2 Three framings of computational thinking
	3 Operationalizing theory in Unfold Studio
	3.1 Cognitive: How well did individual students learn to program?
	3.2 Situated: How did participants draw on literacy practices in developing computational thinking skills?
	3.3 Critical: How did participants connect classroom literacy practices to their broader literacies via identity and voice?

	4 Discussion
	References

