
Lightning Talk: Curating Analyses for Programming Log Data
Thomas W. Price
twprice@ncsu.edu

North Carolina State University
Raleigh, NC

Ge Gao
ggao5@ncsu.edu

North Carolina State University
Raleigh, NC

ABSTRACT
In this lightning talk, we will solicit input from the SPLICE commu-
nity on an effort to collect and curate analyses for programming log
data. The talk will explore what a repository of CS educational data
mining (CSEDM) tools might look like. It will focus on the chal-
lenge presented by the diversity of programming log data, which
can vary in granularity, which events are recorded, and program-
ming language features. We will present an initial effort to organize
analyzes according to the attributes of data that they require.

1 INTRODUCTION
The goal of this lightning talk is to seek input from the SPLICE com-
munity around two questions: 1) What are the most useful things
that researchers have done with students’ programming log data,
and 2) How can we curate these efforts to enable other researchers
to replicate and build on that work? A hypothetical repository of
CS educational data mining (CSEDM) tools might include metrics
that predict student success (e.g. [1, 8, 20]), data-driven tools that
help us understand, visualize or support student programming (e.g.
[5, 18]), and methods to model student knowledge that inform task
selection and provide feedback to the learners (e.g. [3, 21]). Such
a collection, along with the growing availability of programming
data for research (e.g. [2, 7, 9, 12]), would offer an opportunity
to evaluate the generalizability of prior findings across datasets,
to reuse tools across classrooms, or to validate predictive models
across populations. It could help to address existing challenges with
carrying out this work, which has historically required extensive
collaboration (e.g. in [7, 19]). In this talk we will explore what a
repository of CSEDM tools might look like, and focus on one par-
ticular challenge to implementing it: describing the data attributes
that are required by CSEDM tools and present in datasets.

2 VISION FOR A CSEDM REPOSITORY
Efforts to replicate analysis of programming data have historically
taken two approaches. The more common is to share datasets (e.g.
[2, 10, 13]), allowing for secondary analysis by other researchers.
While this is a critical effort that promotes collaboration and repli-
cation, it has limitations. Many datasets cannot be shared due to
privacy or ethical concerns. Effective data sharing also requires ef-
fort on the part of the data provider to carefully document the data,
and support the data consumer as challenges arise. Even when this
is done well, researcher performing this secondary analysis still lose
some critical context when using data they did not collect, which
is often important for interpreting results. A second approach is to
share analysis code and tools. This allows collaboration even when
data cannot be shared and empowers new researchers to build on
the state-of-the-art using their own datasets. While it is common
for researchers to release the source code for their tools, it is much

rarer to see them reused in practice, since the tools often require
new users to adapt the code to their own data and to understand the
tools’ inputs and outputs. To overcome these challenges, a CSEDM
tool repository would need the following:

1. A shared data format. A standardized format to represent
programming log data, such as ProgSnap2 [15], can make it easier
to share data and analysis code. In theory, a researcher who uses the
ProgSnap2 format could release their analysis code (e.g. to calculate
a metric that quantifies students’ difficulty with syntax errors [8]),
and any other researcher using the ProgSnap2 format could run that
analysis code on their own datasets. ProgSnap2 consists primarily
of a MainTable with rows for events (e.g. Compile) and columns for
properties of those events (e.g. SubjectID, CompileMessageType).
It can also support Link Tables that hold auxilary data, such as a
mapping from AssignmentIDs to their respective descriptions.

2. A central analysis repository. LearnSphere’s Tigris plat-
form (learnsphere.org) provides a way for researchers to share and
browse analysis code and apply it across datasets. The platform
already contains reusable components for general analysis (e.g.
logistic regression) and educational data mining (e.g. student mod-
eling). While authoring a CSEDM tool as a Tigris component does
create some overhead for the author, it also helps to standardize
tool documentation, inputs and outputs, and allows components to
be chained together into sharable workflows. Possible components
in a CSEDM repository might include:

• Metrics, that summarizes the behavior of a student, a problem,
or an entire dataset with as a numeric value.

• Visualizations that capture such behavior as a figure.
• Models that can be trained on the data and used to describe it
succinctly or predict new behavior (e.g. student outcomes).

• Data-driven tools that use the data to offer some service to
the student or teacher.

3. A vocabulary for required data attributes. Evenwhen pro-
gramming datasets use a shared format, in practice many analyses
can only be run on datasets that capture specific information (e.g.
compilation or keystroke events), or have specific properties (e.g.
programs are written in Java). Programming data is rich and di-
verse, and datasets vary dramatically in granularity (keystrokes to
submissions), size (tens to millions of programs), and programming
context (compiled or interpreted; textual or block-based). While a
common format makes it easier to identify this information, it is not
explicitly represented, making it difficult to know which CSEDM
tools can be applied to a given dataset, or conversely, which of
the existing programming datasets can be used in a comparative
analysis that relies on a given analysis (e.g. [7]).

Specifically, we define an attribute as a property of a dataset
that is required to perform an analysis. Ideally, attributes should
describe low-level properties of the data, rather than what can be



SPLICE’19, August 11, 2019, Toronto, CA Thomas W. Price and Ge Gao

calculated from these properties. For example, one analysis may
take as input the mean number of attempts students made on each
problem, while another may require the number of problems at-
tempted. However, both of these values can be calculated if the
dataset records “Submit” events, which would make a more appro-
priate attribute. As a starting point, this talk will define four types
of attributes (tied to elements of a ProgSnap2 dataset [15]), and
explore them through case studies:

• Events: Types of events, e.g. Submit, Compile.Error.
• Columns: Properties of events that must be recorded for
each one, e.g. SubjectID, Score.

• Snapshot Properties: Requirements of captured code snap-
shots, e.g. language (Java) or granularity (edit-level).

• Link Tables: Additional data about the programming con-
text, linked to specific columns in the dataset, e.g. knowledge
components or test cases for problems.

3 CASE STUDIES
3.1 Compilation Error Metrics
One active area of CSEDM research is compilation error metrics,
such as the Error Quotient (EQ) [8], Watwin Score [20] and Re-
peated Error Density (RED) [1] metric. These metrics attempt to
characterize the extent to which a given student struggles with
syntax errors over a period of time as a single numeric value, and
have been found to correlate with students’ course outcomes. All
three of these metrics require similar information about students’
compilation behavior:

• Compile andCompile.Error Events: A record of each time
a student compiles their code, and any associated errors

• SubjectID and ProblemID Columns: For each event, which
student and problem it was associated with

• CompileMessageData Column: For each compile event,
the specific compiler message shown to student

Importantly, while these approaches have very similar objectives,
their data requirements differ. Calculating the Watwin score [20],
for example, additionally requires information on when students
run their code (Run.Program events), on which line of code com-
pilation errors occurred (SourceLocation column) and an exact
Timestamp column for each event. This demonstrates how data
requirements can help identify applicable CSEDM approaches.

3.2 Modeling Student Knowledge
Student knowledge modeling is a powerful data mining technique
that can be used to predict students’ success on future problems1,
enable mastery learning [4], understand students’ difficulties [17],
and reflect that knowledge back to students [3]. Basic student mod-
eling approaches only require a record of students’ attempts at
each problem, and whether each attempt was successful, which
we can represent with the Submit event, along with the columns:
SubjectID, ProblemID and Score (the correctness of the submis-
sion). However, to be effective, these techniques also require that
each problem be labeled with one or more skills, or “knowledge
components” (KCs), that it practices. This is a different kind of
requirement that is most easily represented as a LinkTable [15]
1For example, the CSEDM Data Challenge: go.ncsu.edu/data-challenge

that maps ProblemIDs to their respective knowledge components.
Alternatively, some authors have tried inferring these KCs auto-
matically from student code, rather than requiring prespecified KC
[17, 21]. This does not require a LinkTable, but it does introduce
new requirements, such as the need to including the code itself (as
a CodeStateID). Analyses that operate on code snapshots may re-
quire additional Snapshot Properties such as a specific programming
language (e.g. Java, as in [21]) or the ability to represent the code
as an abstract syntax tree (AST; e.g. in [17]).

3.3 Visualizing Student Progress
Visualizing how students navigate and solve programming prob-
lems can help identify important patterns and inform instruction.
For example, prior work has visualized how individual students
add and remove programming concepts over time [6], the paths
that groups of students take when solving a programming problem
[11], and how this “state space” can be discretized for increased
interpretability [22]. These approaches have fewer data attribute
requirements in common, though they each require SubjectID,
ProblemID, and CodeStateID columns. Notably, visualization ap-
proaches can analyze data at different levels of detail, but are usually
more effective with finer-grained snapshots (e.g. Edit-level). We
can describe this property by specifying a required snapshot Gran-
ularity, such as Submission, Run, Save, Edit or Keystroke level data.

3.4 Data-driven Hint Generation
Many CSEDM tools are designed to automatically generate pro-
gramming hints or feedback for students using a dataset of prior
student programming logs [16, 18] (c.f. [14]). These tools differ
from the other CSEDM approaches discussed here, since they are
not designed for analysis, but rather to interact with the student
through an interface. Still, including them in a CSEDM repository
and identifying the dataset attributes they require could enable
their wider dissemination. The ITAP hint generation algorithm
[18] demonstrates another example of a LinkTable requirement,
since like many hint generation algorithms, it relies on a set of
test cases for a given problem to verify the correctness of code
snapshots, including newly generated snapshots not found in the
original dataset. These could be included as LinkTable requirement
that maps ProblemIDs to test case code.

4 SUMMARY
Table 1 in Appendix A summarizes the attributes in 4 categories
that we have identified, and identifies which analyses require each
of these attributes. This helps us to identify important attributes
that should always be logged, such as the SubjectID, ProblemID
and CodeStateID columns, and others that are often useful, such as
Submit events and the Score column. It also suggests which analy-
ses will be easiest to compare across datasets, since they have few
requirements. For example, the compilation error metrics should be
easy to reproduce across datasets, allowing us to verify the gener-
alizability of their claims to predict student outcomes (work which
has already started [7]). As we have argued, this is an important
step for creating a curated repository of useful CSEDM analysis
code.



Lightning Talk: Curating Analyses for Programming Log Data SPLICE’19, August 11, 2019, Toronto, CA

REFERENCES
[1] Brett A. Becker. 2016. A New Metric to Quantify Repeated Compiler Errors for

Novice Programmers. (2016), 296–301. https://doi.org/10.1145/2899415.2899463
[2] Neil C. C. Brown, Michael Kölling, Davin McCall, and Ian Utting. 2014. Blackbox:

A Large Scale Repository of Novice Programmers’ Activity. In Proceedings of
the ACM Technical Symposium on Computer Science Education. 223–228. https:
//doi.org/10.1145/2538862.2538924

[3] Peter Brusilovsky, Sibel Somyurek, Julio Guerra, Roya Hosseini, Vladimir
Zadorozhny, and Paula J. Durlach. 2016. Open Social Student Modeling for
Personalized Learning. IEEE Transactions on Emerging Topics in Computing 4, 3
(2016), 450–461. https://doi.org/10.1109/TETC.2015.2501243

[4] Albert T Corbett. 2000. Cognitive Mastery Learning in the ACT Programming
Tutor. Technical Report. 1–6 pages. http://www.aaai.org/Papers/Symposia/
Spring/2000/SS-00-01/SS00-01-007.pdf

[5] Elena Glassman, Jeremy Scott, Rishabh Singh, and Robert C. Miller. 2015.
OverCode: Visualizing Variation in Student Solutions to Programming Prob-
lems at Scale. ACM Transactions on Computer-Human Interaction 22, 2 (2015).
http://people.csail.mit.edu/rishabh/papers/working/overcode.pdf

[6] R Hosseini, Arto Vihavainen, and Peter Brusilovsky. 2014. Exploring Prob-
lem Solving Paths in a Java Programming Course. Proceedings of the
Psychology of Programming Interest Group Annual Conference (2014), 65–
76. http://repositorium.sdum.uminho.pt/xmlui/bitstream/handle/1822/30076/
PPIGproceedings.pdf?sequence=1{#}page=77

[7] Petri Ihantola, Matthew Butler, Stephen H Edwards, Virginia Tech, Ari Korhonen,
Andrew Petersen, Kelly Rivers, Miguel Ángel Rubio, Judy Sheard, Jaime Spacco,
Claudia Szabo, and Daniel Toll. 2015. Educational Data Mining and Learning
Analytics in Programming: Literature Review and Case Studies. In Proceedings of
the ACM Conference on Innovation and Technology in Computer Science Education.

[8] Matthew C Jadud. 2006. Methods and tools for exploring novice compilation
behaviour. In Proceedings of the Third International Workshop on Computing
Education Research. 73–84. https://doi.org/10.1145/1151588.1151600

[9] Kenneth R Koedinger, Ryan S J Baker, Kyle Cunningham, and Alida Skogsholm.
2010. A Data Repository for the EDM community: The PSLC DataShop. In
Handbook of Educational Data Mining, Cristobal Romero, Sebastian Ventura,
Mykola Pechenizkiy, and Ryan SJd Baker (Eds.). CRC Press, 43–55. https://doi.
org/doi:10.1201/b10274-6 arXiv:0709.1706v2

[10] Andrei Papancea, Jaime Spacco, and David Hovemeyer. 2013. An Open Platform
for Managing Short Programming Exercises. In Proceedings of the Ninth Annual
International ACM Conference on International Computing Education Research
(ICER ’13). ACM, New York, NY, USA, 47–52. https://doi.org/10.1145/2493394.
2493401

[11] Chris Piech, Mehran Sahami, Joh Huang, and Leo Guibas. 2015. Autonomously
Generating Hints by Inferring Problem Solving Policies. In Proceedings of
the ACM Conference on Learning @ Scale. 1–10. http://web.stanford.edu/
{%}7B{~}{%}7Dcpiech/bio/papers/inferringProblemSolvingPolicies.pdfhttp:
//web.stanford.edu/{~}cpiech/bio/papers/inferringProblemSolvingPolicies.pdf

[12] Thomas W Price and Tiffany Barnes. 2017. Position Paper: Block-based Program-
ming Should Offer Intelligent Support for Learners. In Proceedings of the 2nd
Blocks and Beyond Workshop at VL/HCC.

[13] Thomas W. Price, Yihuan Dong, and Dragan Lipovac. 2017. iSnap: Towards
Intelligent Tutoring in Novice Programming Environments. In Proceedings of the
ACM Technical Symposium on Computer Science Education.

[14] Thomas W Price, Yihuan Dong, Rui Zhi, Benjamin Paaßen, Nicholas Lytle, Veron-
ica Cateté, and Tiffany Barnes. 2019. A Comparison of the Quality of Data-driven
Programming Hint Generation Algorithms. International Journal of Artificial
Intelligence in Education (2019).

[15] Thomas W Price, David Hovemeyer, Kelly Rivers, Austin Cory Bart, Andrew
Petersen, Brett A Becker, and Jason Lefever. 2019. ProgSnap2: A Flexible Format
for Programming Process Data. In Proceedings of the Educational Data Mining
in Computer Science Workshop in the Companion Proceedings of the International
Conference on Learning Analytics and Knowledge. 1–7.

[16] Thomas W. Price, Rui Zhi, and Tiffany Barnes. 2017. Evaluation of a Data-
driven Feedback Algorithm for Open-ended Programming. In Proceedings of the
International Conference on Educational Data Mining.

[17] Kelly Rivers, Erik Harpstead, and Ken Koedinger. 2016. Learning Curve Analysis
for Programming: Which Concepts do Students Struggle With?. In Proceedings of
the International Computing Education Research Conference. 143–151.

[18] Kelly Rivers and Kenneth R. Koedinger. 2017. Data-Driven Hint Generation in
Vast Solution Spaces: a Self-Improving Python Programming Tutor. International
Journal of Artificial Intelligence in Education 27, 1 (2017), 37–64. http://link.
springer.com/10.1007/s40593-015-0070-z

[19] Jaime Spacco, Paul Denny, Brad Richards, David Babcock, David Hovemeyer,
James Moscola, and Robert Duvall. 2015. Analyzing Student Work Patterns Using
Programming Exercise Data. (2015), 18–23. https://doi.org/10.1145/2676723.
2677297

[20] Christopher Watson, Frederick W B Li, and Jamie L Godwin. 2014. No tests
required: comparing traditional and dynamic predictors of programming success.

Proceedings of the 45th ACM technical symposium on Computer science education -
SIGCSE ’14 (2014), 469–474. https://doi.org/10.1145/2538862.2538930

[21] Michael Yudelson, Roya Hosseini, Arto Vihavainen, and Peter Brusilovsky. 2014.
Investigating Automated Student Modeling in a Java MOOC. In Proceedings of
the International Conference on Educational Data Mining. 261–264.

[22] Rui Zhi, Thomas W Price, Nicholas Lytle, and Tiffany Barnes. 2018. Reducing the
State Space of Programming Problems through Data-Driven Feature Detection.
In Proceedings of the Educational Data Mining in Computer Science Education
Workshop at the International Conference on Educational Data Mining.

A REQUIREMENTS SUMMARY

https://doi.org/10.1145/2899415.2899463
https://doi.org/10.1145/2538862.2538924
https://doi.org/10.1145/2538862.2538924
https://doi.org/10.1109/TETC.2015.2501243
http://www.aaai.org/Papers/Symposia/Spring/2000/SS-00-01/SS00-01-007.pdf
http://www.aaai.org/Papers/Symposia/Spring/2000/SS-00-01/SS00-01-007.pdf
http://people.csail.mit.edu/rishabh/papers/working/overcode.pdf
http://repositorium.sdum.uminho.pt/xmlui/bitstream/handle/1822/30076/PPIGproceedings.pdf?sequence=1{#}page=77
http://repositorium.sdum.uminho.pt/xmlui/bitstream/handle/1822/30076/PPIGproceedings.pdf?sequence=1{#}page=77
https://doi.org/10.1145/1151588.1151600
https://doi.org/doi:10.1201/b10274-6
https://doi.org/doi:10.1201/b10274-6
http://arxiv.org/abs/0709.1706v2
https://doi.org/10.1145/2493394.2493401
https://doi.org/10.1145/2493394.2493401
http://web.stanford.edu/{%}7B{~}{%}7Dcpiech/bio/papers/inferringProblemSolvingPolicies.pdf http://web.stanford.edu/{~}cpiech/bio/papers/inferringProblemSolvingPolicies.pdf
http://web.stanford.edu/{%}7B{~}{%}7Dcpiech/bio/papers/inferringProblemSolvingPolicies.pdf http://web.stanford.edu/{~}cpiech/bio/papers/inferringProblemSolvingPolicies.pdf
http://web.stanford.edu/{%}7B{~}{%}7Dcpiech/bio/papers/inferringProblemSolvingPolicies.pdf http://web.stanford.edu/{~}cpiech/bio/papers/inferringProblemSolvingPolicies.pdf
http://link.springer.com/10.1007/s40593-015-0070-z
http://link.springer.com/10.1007/s40593-015-0070-z
https://doi.org/10.1145/2676723.2677297
https://doi.org/10.1145/2676723.2677297
https://doi.org/10.1145/2538862.2538930


SPLICE’19, August 11, 2019, Toronto, CA Thomas W. Price and Ge Gao

Table 1: For each CSEDM analysis discussed in Section 3 (columns), this table summarizes the required data attributes (rows).
Analyses and attributes are both grouped by category.

EQ WatW
in

RED
Corb

ett
 (2

00
0)

Rive
rs 

(20
16

)

Yudels
on (2

01
5)

Hoss
ein

i (2
01

4)

Zhi (2
01

8)

Piec
h (2

01
5)

ITAP
Source

Chec
k

Compilation Error Student Models Visualization Hints

Events

Compile X X X
Compile.Error X X X
Run.Test X
Submit X X X X X X
Run.Program X X
File.Edit X X X

Columns

Order X X X X X X X X X X X
SubjectID X X X X X X X X X X X
ProblemID X X X X X X X X X X X
CompileErrorType X X X
SourceLocation X
Timestamp X
CodeStateID X X X X X X X
Score X X X X X

Snapshot
Properties

Language Java Java Python
AST X X X X
Granularity Submit Save Run Edit Edit Edit Submit

Link
Tables

KCs X
TestCases X X


	Abstract
	1 Introduction
	2 Vision for a CSEDM Repository
	3 Case Studies
	3.1 Compilation Error Metrics
	3.2 Modeling Student Knowledge
	3.3 Visualizing Student Progress
	3.4 Data-driven Hint Generation

	4 Summary
	References
	A Requirements Summary

