
Runestone Interactive Ebooks: A Research Platform for On-line
Computer Science Learning

Barbara J. Ericson
barbarer@umich.edu
University of Michigan
School of Information
Ann Arbor, Michigan

Iman YeckehZaare
oneweb@umich.edu

University of Michigan
School of Information

Ann Arbor, MI

Mark J. Guzdial
mjguz@umich.edu

University of Michigan
Computer Science and Engineering

Ann Arbor, Michigan

ABSTRACT
The Runestone ebook platform is open source, extensible, and al-
ready serves over 25,000 learners a day. The site currently hosts
18 free ebooks for computing courses. Instructors can create a cus-
tom course from any of the existing ebooks on the site and can
have their students register for that custom course. Instructors
can create assignments from the existing material in each ebook,
grade assignments, and visualize student progress. Instructors can
even create new content for assignments. The Runestone ebooks
contain instructional material and a variety of practice problem
types with immediate feedback. One of the practice types, Parsons
problems, is also adaptive, which means that the difficulty of the
problem is based on the learner’s performance. Learner interaction
is recorded and can be analyzed. This paper presents the history
of Runestone, describes the interactive features, summarizes the
previous research studies, and provides detail on the recorded data.
Interaction data can be shared with other learning environments
through the Learning Tools Interoperability Standard (LTI).

CCS CONCEPTS
• Social and professional topics → Informal education; Stu-
dent assessment; K-12 education; Adult education.

KEYWORDS
on-line learning, adaptive learning, practice tools, intelligent ebooks
ACM Reference Format:
Barbara J. Ericson, Iman YeckehZaare, and Mark J. Guzdial. 2019. Runestone
Interactive Ebooks: A Research Platform for On-line Computer Science
Learning. In ICER ’19: ACM International Computing Education Research,
August 12–14, 2019, Toronto, ON, Canada. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
BradMiller created the Runestone ebook platform in 2011 during his
sabbatical when he was supposed to be working on a new edition of
two paper textbooks. He was having writer’s block because he did
not like the idea of using paper textbooks for computer science. He

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICER ’19, August 12–14, 2019, Toronto, ON, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

wanted to have electronic books (ebooks) with embedded code that
the learner could run and edit. Brad also wanted ebooks to be free so
that everyone has the chance to learn computer science, even if they
can not afford a $200 textbook. Brad’s goal was textit“democratizing
textbooks for the 21st century".

Brad started looking for a way to run Python in the browser. He
found Skulpt (skuplt.org), an in-browser implementation of Python.
He built a Logo-style turtle graphics [17] module for Skulpt , but
then realized that authors would not want to write JavaScript for ev-
ery example. He started looking for a document system that would
enable authors to easily write ebooks with executable and editable
code. Brad found Sphinx, an extensible tool written in Python for
creating beautiful documentation. Documents are written in re-
structuredText (rst), which is a very minimal markup language that
is similar to Markdown. Sphinx contains built-in directives that let
you easily add images, figures, notes and more. To add an extension
to Sphinx you create a new directive, which can have arguments,
options, and content. Brad created a new directive in Sphinx to al-
low authors to easily author executable and editable code examples
in Python. Brad used the web2py web framework since it supported
database-driven web applications.

Over the years many people have joined the project and con-
tributed many new directives (features). This paper will describe
the features and what data is recorded for each and summarize the
research studies.

2 RUNESTONE FEATURES
Runestone supports instructional features like text, images, videos,
executable/editable code, audio tours, a code visualiser/stepper
(Python Tutor), and expression evaluation. It also supports prac-
tice questions that provide immediate feedback: multiple-choice,
fill-in-the-blank, drag-and-drop, clickable code, clickable table item,
and Parsons problems. Runestone also includes a couple of ques-
tion types that do not provide immediate feedback, but record the
learner’s answer: short-answer and poll questions. A timed exam
feature can be used for timed assessments. One of new newer fea-
tures of Runestone is a practice tool that instructors can use to
encourage spaced, interleaved, and retrieval-based practice. The
following subsections describe Runestone’s features and the type
of data that is recorded during usage of that feature.

2.1 Executable/Editable Code
The activecode directive is used to add executable and editable code
as shown in Figure 1. If the code is Python, it is run as JavaScript
on the client using Skulpt. If the code is in JavaScript or HTML it is

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICER ’19, August 12–14, 2019, Toronto, ON, Canada Barbara J. Ericson, Iman YeckehZaare, and Mark J. Guzdial

run directly in the browser. If the code is in Java or C++ the code is
executed on a server.

Figure 1: Executed Python code with output.

Runestone supports both Logo style turtle graphics [17] as shown
in Figure 2 and image manipulation in both Python and Java as
executable and editable code as shown in Figure 3. The image
manipulation exercises are from themedia computation approach in
which learners write programs that modify media: images, sounds,
videos, and text [11][10]. Media computation has improved student
pass rates and engagement [12][22][20].

Figure 2: A turtle graphics example in Java.

The activecode directive can optionally include up to five audio
tours associated with it. In an audio tour, one or more lines of code
are highlighted as the audio plays as shown in Figure 4. This feature
takes advantage of the fact that humans have dual channels which
allow simultaneous processing of visual and audio information
[14][15].

2.2 Code Visualizer/Stepper
A version of Philip Guo’s Python Tutor can be added to Python
ebooks using the codelens directive[9] as shown in Figure 5. It
allows learners to step through the code line by line and displays
the current value of all variables. Authors can also embed a question
that will be asked before a specified line is executed. Questions can
have students predict which line will execute next or the value of a
variable after the next line executes.

Figure 3: A media computation example in Python.

Figure 4: An audio tour highlights one ormore lines of codes
as the audio plays that explains those lines.

Figure 5: An example of the code visualizer/stepper (Python
Tutor).

Runestone does not currently support embedded visualizers for
other languages, such as Java, but authors can add a link to an exter-
nal visualizer, such as the Java Tutor, which can display preloaded
code.

2.3 Expression Evaluation
Expression evaluation is added using the showeval directive. It
shows the next step in the evaluation of an expression after each

Runestone Interactive Ebooks: A Research Platform for On-line Computer Science Learning ICER ’19, August 12–14, 2019, Toronto, ON, Canada

click of the Next Step button as shown in Figure 6. It displays the
current expression on the next line and then animates replacing
part of that expression with the result of the evaluation.

Figure 6: An example visualization of the evaluation of a
complex expression.

2.4 Multiple-Choice Questions
Runestone supports multiple-choice questions with one or more
required answers with themchoice directive. Immediate feedback is
provided based on the answer or answers selected when the Check
Me button is clicked.

2.5 Fill-in-the-Blank Questions
A fillintheblank directive is used to allow users to type an answer to
a question. Feedback is displayed based on the regular expression
that matches the answer when the Check Me button is clicked.

2.6 Drag and Drop Questions
The dragndrop directive allows learners to drag a definition to the
matching concept as shown in Figure 7. Feedback is displayed below
the question when the Check Me button is clicked.

Figure 7: An example of a drag and drop question where the
user drags the definition to the matching concept.

2.7 Clickable Code
Authors can add clickable code questions using the clickablearea
directive. In clickable code the user clicks on one or more lines of
code to answer a question. Each line that the user clicks is high-
lighted in yellow. The user clicks the Check Me button to submit
an answer. The correct lines that were clicked remain highlighted
in yellow and any incorrect lines that were clicked are boxed in
red as shown in Figure 8. Textual feedback is displayed under the
question as shown in Figure 8.

Figure 8: A clickable code question that shows the correct an-
swers still highlighted in yellow and the incorrect answers
boxed in red.

.

2.8 Clickable Table Item
Authors can add clickable table items using the clickablearea di-
rective with a table. Learners click on one or more table item to
answer a question as shown in Figure 9.

Figure 9: A clickable table item question that asks the user
to click on the array values at index 1 and 3.

2.9 Short Answer
A shortanswer directive allows the learner to type in a textual re-
sponse to a question a shown in Figure 10. The only feedback is
that the answer has been saved.

2.10 Poll
The poll directive allows the author to create a poll question as
shown in Figure 11. The only feedback is that the answer has been
recorded.

ICER ’19, August 12–14, 2019, Toronto, ON, Canada Barbara J. Ericson, Iman YeckehZaare, and Mark J. Guzdial

Figure 10: A short answer question that allows the user to
type in text to answer a question. The text is saved to the
server.

Figure 11: An example poll question. The answer is saved on
the server.

2.11 Tabbed Panel
The tabbed directive creates a tabbed panel that can contain several
tabs. Each tab is created with the tab directive. Each tab can contain
content. In the example shown in Figure 12 the learner is asked to
write the code to solve a problem, but there is also a tab with the
answer and another tab for a discussion area. The learner clicks on
a tab to display the content in that tab.

Figure 12: An example tabbed panel with three tabs. One tab
contains the question, one the answer, and one the discus-
sion.

2.12 Parsons Problems
Parsons problems are mixed up code problems where the learner
places the code in the correct order to solve a problem [19]. They
can be added using the parsons directive.

Figure 13: An example Parsons problem in Python. The
mixed-up blocks are shown on the left and the correct so-
lution is shown on the right.

Parsons problems can optionally display labels to support col-
laborative work as shown in Figure 14. These labels are also useful
when Parsons problems are used in paper-based exams [3][2]. On
a paper-based exam the learner can simply write the block labels
in the correct order. This reduces the cognitive load for test takers
since they do not have to generate a solution. Paper-based Par-
sons problems are faster to grade than the equivalent code writing
problem and the grading is more consistent [2]. Scores on Parsons
problems have correlated with scores on code writing problems
[3][2].

Parsons problems can also contain distractors, which are extra
code blocks that are not needed in a correct solution. Distractors can
either be randomly mixed in with the correct code or shown paired
with the corresponding correct code as shown in Figure 14. Some
Parsons problems also require the learner to indent the code cor-
rectly. These are called two-dimensional Parsons problems. Some
languages, like Python, require indentation to specify the code
structure such as which statements are in the body of a loop.

Ericson invented two types of adaptation for Parsons problems
[5]. In intra-problem adaptation if the learner is struggling to solve
the current problem it can dynamically be made easier by disabling
distractor blocks, providing indentation, or combining blocks. In
inter-problem adaptation if the learner solved the last problem in
just one attempt the next problem can be made harder by randomly
mixing all distractors in with the correct code blocks. If the learner
took many attempts to solve the last problem the next problem
can be made easier by pairing the correct and distactor code or
removing distractors.

2.13 Timed exams
Authors can add timed exams to ebooks using the timed directive.
These are intended for summative assessment and can contain any
of the practice question types such as multiple-choice questions,
fill-in-the-blank questions, and Parsons problems. A timed exam
can have a time limit or can just display the amount of time the
user has spent on the exam. The learner must click the Start button
to start a timed exam and then one question is displayed at a time
as shown in figure Figure 15. The user can use the question number
buttons to jump to a particular question.

Runestone Interactive Ebooks: A Research Platform for On-line Computer Science Learning ICER ’19, August 12–14, 2019, Toronto, ON, Canada

Figure 14: An example Parsons problem in Python. The
mixed-up blocks are shown on the left and the correct so-
lution is shown on the right.

Figure 15: An example timed exam. Notice that only one
question is displayed at a time.

3 SUMMARY OF RESEARCH STUDIES
The next sections summarize the research studies that have been
conducted with Runestone ebooks.

3.1 First Ebook Trial
Brad and his colleague David Ranum at Luther College created
an interactive version of the How to Think Like a Computer Sci-
entist ebook in 2011. Their ebook contained text, images, videos,
executable and editable Python code, and a code visualizer (Philip
Guo’s Python Tutor). Brad and David trialed the interactive version
of the this ebook in the fall of 2011 with 66 undergraduate students
and gathered feedback in a survey. The survey provided evidence
that the students were positive about the ebook. Sixty-one (90%) of
the students said that they would want to use a similar ebook in
another course [16].

3.2 Studies by CSLearning4U
The CSLearning4U group applied findings from educational psy-
chology to interactive ebooks. In particular the group used worked
examples [21] plus practice [23] and multiple-modalities (audio
tours) [14]. One goal was to make learning more efficient to meet
the needs of busy in-service secondary teachers. The group first
modified the How to Think Like a Computer Scientist ebook and
later created a teacher and student version of an ebook for the Ad-
vanced Placement (AP) Computer Science Principles (CSP) course.
This course is offered in secondary schools and is intended to be
equivalent to a college level course for non-majors. It covers pro-
gramming fundamentals including variables, loops, conditionals,
and functions.

The group conducted a usability survey with 18 teachers compar-
ing several interactive features (code execution, code visualisation,
Parsons problems, and multiple choice) on three ebook platforms
(Runestone, Zyante, and CS Circles) [4]. The majority of the partic-
ipants preferred the Runestone platform interface.

A log file analysis of usage of the How to Think Like a Computer
Scientist ebook found that more users attempted the Parsons prob-
lems than nearby multiple-choice questions, that the number of
users declined from the start to the end of each chapter, and that
users were more likely to attempt practice problems than watch
videos, listen to audio tours, or edit code [6]. While most users
were able to solve the Parsons problems in just one or two attempts,
there were users who took between 20 and 100 attempts to solve
each problem, and some users gave up and never solved them.

Ten teachers worked through the first eight chapters of the AP
CSP ebook at their own pace [4]. Five of the ten teachers completed
the first eight chapters for a 50% completion rate. This is higher than
typical MOOC completion rates, however the teachers received a
$50 gift card for completing the chapters. The teachers who had the
highest scores on the post-tests also used the interactive features
the most [4].

In a large-scale study with 130 teachers using version two of the
teacher ebook we found that teachers valued the worked example
plus practice approach, Parsons problems, and having lots of prac-
tice problems [8]. Many teachers did not edit code or listen to audio
tours. However, some teachers reported that they found audio tours
useful for demonstrating how to describe code. Teachers reported
that using the ebook increased their confidence in their ability to
teach the content.

In a log file analysis of the teacher and student versions of the
AP CSP ebook we found evidence that teachers use the ebook differ-
ently than students [18]. Students ran the same program multiple
times without changing it and made many more failed attempts
to solve problems. Teachers may be more aware of successful and
unsuccessful learning strategies.

3.3 Parsons Problems Research
Ericson used Runestone to study the efficiency and effectiveness of
solving Parsons problems versus fixing code and versus writing the
equivalent code [7]. Undergraduate students solved Parsons prob-
lems significantlymore quickly than fixing orwriting the equivalent
code and with comparable learning gains from pretest to post-test.

ICER ’19, August 12–14, 2019, Toronto, ON, Canada Barbara J. Ericson, Iman YeckehZaare, and Mark J. Guzdial

Ericson also tested the efficiency and effectiveness of solving adap-
tive Parsons problems, versus non-adaptive Parsons problems, and
versus writing the equivalent code [5]. Again, undergraduate stu-
dents solved both types of Parsons problems significantly more
quickly than writing the equivalent code. The adaptive Parsons
problem group had significantly higher learning gains than the
control group.

3.4 Practice Tool Research
YeckehZaare created and tested an adaptive practice tool on the
Runestone platform [24] based on the theory of desirable difficulties
[1]. Desirable difficulties are those that improve long-term reten-
tion, but reduce short-term learning gains. One example is spacing
practice over many days rather than studying the night before an
exam. Another is interleaving different topics rather than study-
ing just one topic at a time. A third is forcing yourself to retrieve
an answer to a question rather than just rereading the question
and answer. The practice tool provides spaced, interleaved, and
retrieval practice by reusing the practice questions in an ebook
and presenting a question on a topic just before an algorithm (a
modified version of SuperMemo 2) predicts that the learner is likely
to forget that topic. One question is shown at a time as shown in
Figure 16. Students had to answer at least ten questions correctly
during a practice session to earn a point and earned the maximum
number of points by practicing at least 45 days over a semester.

Figure 16: The practice tool interface.

Students tend to prefer techniques that improve short-term learn-
ing over those that improve long-term retention and recall [13].
However, in a study with 193 undergraduate students we found
that every hour of using the practice tool was correlated with an
increase in the average final exam grades of 1.04%[24]. Students
reported finding the tool useful and motivating. In fact, 62 (32%) of
the students used the practice tool more than 45 days, even though
they didn’t earn any additional points for doing so, which indicates
that they found the tool valuable.

4 RECORDED DATA
Runestone records ebook interaction data and this data can be
retrieved from a log file. Instructors can download a log file from

the instructor’s page. The log includes the date and time of the
interaction (timestamp), the user id (sid), the directive (event), and
additional information (act) based on the event type as shown in
Figure 17. The log also includes a unique id (div_id) for each problem
in an ebook, the course id (course_id), and the short name for the
ebook (base_course).

Figure 17: Part of a log file from Runestone that has been
anonymized

The log contains a record of each page load, code execution, code
edit, video play, audio tour play, and practice question answer. All
code that is executed or saved is available as well, but it does not
appear in the standard log file. You have to request the code from
Brad Miller who runs the Runestone server. The log also records
the answers to each of the practice questions and whether that
answer was correct as shown in Figure 17 for the multiple-choice
questions (mchoice) and Parsons problems (parsonsprob).

The log contains extensive data on Parsons problems. It records
every move of a block as well as the contents the source area on
the left and the solution area on the right as shown in 17. For
example, the first Parsons problem entry with a unique problem id
of "thirdClass" has "start|6_05_0-4_0-2_3_0-0_1_0|-|c0" in the act
column. The "start" means that the user has started the problem.
The first "|" starts the information about the source area on the left
and the second "|" starts the information about the solution area
on the right. The numbers before the last "_" are the line numbers
from the Parsons problem source and the number after the last "_" is
the level of indentation. Zero means that the block is not indented.
Parsons problems start with all of the code blocks in the source
area on the left and the user drags the blocks to the solution area
on the right. The "-" means that the solution area on the right does
not contain any blocks. The state when the problem is correct is
"correct|-|0_1_0-2_3_0-4_0-5_0-6_0|c1-s" which shows that all of
the code blocks have been put in the correct order in the solution
area on the right side without any indentation. Code blocks can
contain more than one line of code as shown in the second example
with a unique problem id of "fourthclass". This problem has several
lines in one block as shown by the start state "start|10_0-6_7_0-
4_5_0-0_1_0-2_3_0-8_0-9_0-11_0|-|c0". It has line 10 in one block
and then lines 6 and 7 together in the next block.

ACKNOWLEDGMENTS
We thank Brad Miller for his work developing and enhancing the
Runestone platform, the people who have contributed features to
Runestone, and the students and teachers who have used ebooks
on the Runestone platform.

Runestone Interactive Ebooks: A Research Platform for On-line Computer Science Learning ICER ’19, August 12–14, 2019, Toronto, ON, Canada

REFERENCES
[1] Elizabeth L Bjork, Robert A Bjork, et al. 2011. Making things hard on yourself,

but in a good way: Creating desirable difficulties to enhance learning. Psychology
and the real world: Essays illustrating fundamental contributions to society 2, 59-68
(2011).

[2] Nick Cheng and Brian Harrington. 2017. The Code Mangler: Evaluating Cod-
ing Ability Without Writing any Code. In Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education. ACM, 123–128.

[3] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008. Evaluating a new exam
question: Parsons problems. In Proceedings of the fourth international workshop
on computing education research. ACM, 113–124.

[4] Barbara Ericson, Mark Guzdial, Briana Morrison, Miranda Parker, Matthew Mol-
davan, and Lekha Surasani. 2015. An eBook for teachers learning CS principles.
ACM Inroads 6, 4 (2015), 84–86.

[5] Barbara J. Ericson, James D. Foley, and Jochen Rick. 2018. Evaluating the Efficiency
and Effectiveness of Adaptive Parsons Problems. In Proceedings of the 2018 ACM
Conference on International Computing Education Research (ICER ’18). ACM, New
York, NY, USA, 60–68. https://doi.org/10.1145/3230977.3231000

[6] Barbara J Ericson, Mark J Guzdial, and Briana B Morrison. 2015. Analysis of
interactive features designed to enhance learning in an ebook. In Proceedings of
the eleventh annual International Conference on International Computing Education
Research. ACM, 169–178.

[7] Barbara J Ericson, Lauren E Margulieux, and Jochen Rick. 2017. Solving parsons
problems versus fixing and writing code. In Proceedings of the 17th Koli Calling
Conference on Computing Education Research. ACM, 20–29.

[8] Barbara J Ericson, Kantwon Rogers, Miranda Parker, Briana Morrison, and Mark
Guzdial. 2016. Identifying design principles for CS teacher Ebooks through
design-based research. In Proceedings of the 2016 ACM Conference on International
Computing Education Research. ACM, 191–200.

[9] Philip J Guo. 2013. Online python tutor: embeddable web-based program visual-
ization for cs education. In Proceeding of the 44th ACM technical symposium on
Computer science education. ACM, 579–584.

[10] Mark Guzdial and Barbara Ericson. 2007. Introduction to computing & program-
ming in Java: a multimedia approach. Pearson Prentice Hall.

[11] Mark Guzdial and Barbara Ericson. 2016. Introduction to computing and program-
ming in python. Pearson.

[12] Mark Guzdial and Allison Elliott Tew. 2006. Imagineering inauthentic legitimate
peripheral participation: an instructional design approach for motivating comput-
ing education. In Proceedings of the second international workshop on Computing

education research. ACM, 51–58.
[13] Nate Kornell and Robert A Bjork. 2009. A stability bias in human memory: Over-

estimating remembering and underestimating learning. Journal of experimental
psychology: General 138, 4 (2009), 449.

[14] Richard E Mayer. 2008. Applying the science of learning: Evidence-based princi-
ples for the design of multimedia instruction. American psychologist 63, 8 (2008),
760.

[15] Richard E Mayer and Roxana Moreno. 1998. A split-attention effect in multimedia
learning: Evidence for dual processing systems in working memory. Journal of
educational psychology 90, 2 (1998), 312.

[16] Bradley N Miller and David L Ranum. 2012. Beyond PDF and ePub: toward
an interactive textbook. In Proceedings of the 17th ACM annual conference on
Innovation and technology in computer science education. ACM, 150–155.

[17] Seymour Papert. 1980. Mindstorms: Children, computers, and powerful ideas. Basic
Books, Inc.

[18] Miranda C Parker, Kantwon Rogers, Barbara J Ericson, and Mark Guzdial. 2017.
Students and Teachers Use An Online AP CS Principles EBook Differently:
Teacher Behavior Consistent with Expert Learners. In Proceedings of the 2017
ACM Conference on International Computing Education Research. ACM, 101–109.

[19] Dale Parsons and Patricia Haden. 2006. Parson’s programming puzzles: a fun and
effective learning tool for first programming courses. In Proceedings of the 8th
Australasian Conference on Computing Education-Volume 52. Australian Computer
Society, Inc., 157–163.

[20] Leo Porter and Beth Simon. 2013. Retaining nearly one-third more majors with a
trio of instructional best practices in CS1. In Proceeding of the 44th ACM technical
symposium on Computer science education. ACM, 165–170.

[21] John Sweller. 1988. Cognitive load during problem solving: Effects on learning.
Cognitive science 12, 2 (1988), 257–285.

[22] Allison Elliott Tew, Charles Fowler, and Mark Guzdial. 2005. Tracking an inno-
vation in introductory CS education from a research university to a two-year
college. In ACM SIGCSE Bulletin, Vol. 37. ACM, 416–420.

[23] John Gregory Trafton and Brian J Reiser. 1994. The contributions of studying
examples and solving problems to skill acquisition. Ph.D. Dissertation. Citeseer.

[24] Iman YeckehZaare, Paul Resnick, and Barbara Ericson. 2019. A Spaced, Interleaved
Retrieval Practice Tool that is Motivating and Effective. In Proceedings of the
International Computing Education Research Conference (ICER ’19), August 12–14,
2019, Toronto, ON, Canada. ACM.

https://doi.org/10.1145/3230977.3231000

	Abstract
	1 Introduction
	2 Runestone Features
	2.1 Executable/Editable Code
	2.2 Code Visualizer/Stepper
	2.3 Expression Evaluation
	2.4 Multiple-Choice Questions
	2.5 Fill-in-the-Blank Questions
	2.6 Drag and Drop Questions
	2.7 Clickable Code
	2.8 Clickable Table Item
	2.9 Short Answer
	2.10 Poll
	2.11 Tabbed Panel
	2.12 Parsons Problems
	2.13 Timed exams

	3 Summary of Research Studies
	3.1 First Ebook Trial
	3.2 Studies by CSLearning4U
	3.3 Parsons Problems Research
	3.4 Practice Tool Research

	4 Recorded Data
	Acknowledgments
	References

