Integrating CrowdSorcerer: Lessons Learned

Nea Pirttinen
nea.pirttinen@helsinki.fi
University of Helsinki

ABSTRACT

CrowdSorcerer is a tool for crowdsourcing programming assign-
ments and teaching testing. While originally developed for the
introductory Java courses at the University of Helsinki, the tool
is currently being integrated into the introductory Python course
at the University of Toronto. Our goal is to make CrowdSorcerer
easily integrable for multiple types of materials and contexts. This
facilitates the crowdsourcing aspect by both increasing the size of
the population using the tool as well as diversifying the content
that is generated.

CCS CONCEPTS

« Information systems — Crowdsourcing; « Social and profes-
sional topics — Computing education.

KEYWORDS

crowdsourcing, assignment creation, testing

ACM Reference Format:

Nea Pirttinen and Juho Leinonen. 2019. Integrating CrowdSorcerer: Lessons
Learned. In Proceedings of SPLICE ’19. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Crowdsourcing is well-suited for big tasks that can be split into
multiple smaller tasks. Instead of focusing a huge workload for one
person, a group of people can create the same outcome by doing
only a little bit of work each. Crowdsourcing has been successfully
used for example in Amazon Mechanical Turk!, a website through
which businesses can hire users to complete small tasks that re-
quire manual work. Another example of wide-scale crowdsourcing
effort is Wikipedia?, a multilingual online encyclopedia maintained
through users’ open collaboration.

Crowdsourcing has been proven to be a working collaboration
method also in education. For example, online material collection
OpenDSA [6] has been developed by crowdsourcing and supports a
wide range of computer science courses, such as data structures and
algorithms, programming languages, and formal languages with
tools such as visualizations and interactive exercises. PeerWise [1]
is a web-based tool used by students of various fields, including
computer science, used to create and thus crowdsource multiple

!https://www.mturk.com/
https://www.wikipedia.org/

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPLICE 19, August 11, 2019, Toronto, CA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-XxXX-X/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Juho Leinonen
juho.leinonen@helsinki.fi
University of Helsinki

choice questions. Relying on computer science educators rather
than student efforts, Canterbury QuestionBank [5] is a comprehen-
sive set of multiple choice questions suitable for first-year computer
science courses.

One key requirement of crowdsourcing is having a big crowd. In
the educational context, a single university can usually only offer a
relatively small crowd, especially since crowdsourcing efforts are
generally focused on a specific task on a single course, or a handful
of courses at best. Multiple collaborating universities can offer a
bigger crowd, as well as multiple kinds of contexts to investigate.

This raises a question: How should a crowdsourcing tool be de-
veloped so that it is interoperable? We have originally built Crowd-
Sorcerer for the University of Helsinki introductory Java course,
held in Finnish, and are now integrating the tool to the University
of Toronto introductory Python course, held in English.

2 OVERVIEW OF CROWDSORCERER

CrowdSorcerer [3] is a programming education tool designed to be
easily embeddable into any online course material. The students
using the tool are expected to create a programming assignment
of their own from scratch, using the instructions given by the
course instructor as a basis (such as “Create an assignment that
uses for-loops”). The students come up with an assignment handout
describing the problem that is to be solved, a source code that is
divided to a code template and a model solution, and test cases for
the program. The code template acts as a structure and can include
for example the method declaration or a main method. The model
solution only includes the functionality of the program, that is, the
lines that a student trying to complete the assignment would need
to write into the code template. The students also need to provide
tags that describe their assignment, such as “for-loop”, “if-else” or
“very difficult”. These are to help with the filtering of the exercise
database if the student-created assignments are to be used in course
materials.

When submitted, the assignment is tested with the student-
provided test cases, and possible compilation errors or test related
errors are given to the student to investigate if need be. Students can
create test cases in three different ways, each requiring a different
level of understanding of testing practices.

(1) Input-output tests: The student gives the input for the
program, and the expected output for that specific input.
Input-output with visible unit test source code: The stu-
dent gives the name of the test case, which assertion type to
use (contains, does not contain or equals), and input-output
pairs similarly to the first case. These are inserted into the
source code of the unit test as the student changes the values
so that they can see how their changes affect the source code
of the unit test.
(3) Write a complete test method: The student writes the
whole unit test.

@

~


https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SPLICE *19, August 11, 2019, Toronto, CA

Completed assignments with fully passed tests can be peer re-
viewed within the same tool [4]. When reviewing, the students
see the assignment in full, and they can investigate the code tem-
plate and the model solution separately. Reviewing is done through
statements such as “The code template and the model solution are
separated correctly” and “The test coverage is reasonable”, which
are rated on a Likert-like scale ranging from one to five. The stu-
dents are also expected to give a short written review, as well as
tags that they think suit the assignment the best.

Though this setup is what we have used in our introductory
Java courses in the University of Helsinki, all the components of
CrowdSorcerer are modifiable. For example, we are currently inte-
grating the tool to an introductory Python course at the University
of Toronto, where the focus is on teaching testing instead of creating
assignments. In this case, the students do not write an assignment
handout, give tags or edit the source code. Instead, the tool presents
a ready-made program (created by the instructor) that cannot be
edited. The students are only expected to write test cases for the ex-
isting program. Currently, CrowdSorcerer supports testing types (1)
and (2) for this kind of practice, and type (3) is under development.

3 LESSONS LEARNED

CrowdSorcerer was originally developed for the Java programming
course materials at the University of Helsinki. The tool has been
used on multiple programming courses since autumn 2017. The
material base has gone through some major updates during the
operation of CrowdSorcerer, but we have been able to keep the tool
online throughout the material update processes. This is a benefit
that comes from a microservice architecture — since CrowdSorcerer
functions as its own unit outside the material it is embedded to,
only the components that handle the importing need to be updated.

Currently, CrowdSorcerer can be imported into an online course
material in two different ways: either as a React component that
can be installed through npm or through an HTML script tag. The
University of Helsinki course material currently uses the first ap-
proach, while the University of Toronto course material has taken
the latter.

At the time of writing this paper, CrowdSorcerer is being in-
tegrated into the University of Toronto Python material. We will
report more on the lessons learned as the integration finishes.

4 GOALS FOR THE FUTURE

Future goals for CrowdSorcerer are twofold: collecting a large pool
of programming assignments, and helping students learn testing in
a straightforward way.

Nea Pirttinen and Juho Leinonen

The programming assignment database offers the possibility of
enhancing adaptive content in programming course materials. Re-
viewed assignment could be used, for example, to give students
who struggle with a particular topic of the course some extra prac-
tice to help them stay on track. An open pool of assignments in
multiple programming languages and easy integration of those
assignments to different types of programming materials would
ease the load that instructors have while creating and updating
their course materials.

While research so far on whether CrowdSorcerer helps students
to learn testing has given debatable results [2], we hope that im-
provements made to the tool give the students a better learning
experience. After integrating the tool to the materials at the Univer-
sity of Toronto, our goal is to study whether using CrowdSorcerer
helps students understand and learn testing more efficiently. A
study will be conducted during autumn 2019, and our intent is
to conduct the study both at the University of Helsinki and the
University of Toronto to measure the effects in various contexts.

ACKNOWLEDGMENTS

We are grateful for the support provided by the SPLICE project for
integrating CrowdSorcerer at University of Toronto.

REFERENCES

[1] Paul Denny, Andrew Luxton-Reilly, and John Hamer. 2008. The PeerWise System of
Student Contributed Assessment Questions. In Proceedings of the Tenth Conference
on Australasian Computing Education - Volume 78 (ACE "08). Australian Computer
Society, Inc., Darlinghurst, Australia, Australia, 69-74. http://dl.acm.org/citation.
cfm?id=1379249.1379255

[2] Vilma Kangas, Nea Pirttinen, Henrik Nygren, Juho Leinonen, and Arto Hellas.
2019. Does Creating Programming Assignments with Tests Lead to Improved
Performance in Writing Unit Tests?. In Proceedings of the ACM Conference on
Global Computing Education (CompEd ’19). ACM, New York, NY, USA, 106-112.
http://doi.acm.org/10.1145/3300115.3309516

[3] NeaPirttinen, Vilma Kangas, Irene Nikkarinen, Henrik Nygren, Juho Leinonen, and
Arto Hellas. 2018. Crowdsourcing Programming Assignments with CrowdSorcerer.
In Proceedings of the 23rd Annual ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE 2018). ACM, New York, NY, USA, 326-331.
http://doi.acm.org/10.1145/3197091.3197117

[4] Nea Pirttinen, Vilma Kangas, Henrik Nygren, Juho Leinonen, and Arto Hellas. 2018.
Analysis of Students’ Peer Reviews to Crowdsourced Programming Assignments.
In Proceedings of the 18th Koli Calling International Conference on Computing
Education Research (Koli Calling 18). ACM, New York, NY, USA, Article 21, 5 pages.
http://doi.acm.org/10.1145/3279720.3279741

[5] Kate Sanders, Marzieh Ahmadzadeh, Tony Clear, Stephen H. Edwards, Mikey

Goldweber, Chris Johnson, Raymond Lister, Robert McCartney, Elizabeth Patitsas,

and Jaime Spacco. 2013. The Canterbury QuestionBank: Building a Repository of

Multiple-choice CS1 and CS2 Questions. In Proceedings of the ITICSE Working Group

Reports Conference on Innovation and Technology in Computer Science Education-

working Group Reports (ITiCSE -WGR ’13). ACM, New York, NY, USA, 33-52.

http://doi.acm.org/10.1145/2543882.2543885

Clifford A. Shaffer, Ville Karavirta, Ari Korhonen, and Thomas L. Naps. 2011.

OpenDSA: Beginning a Community active-eBook Project. In Proceedings of the

11th Koli Calling International Conference on Computing Education Research (Koli

Calling ’11). ACM, New York, NY, USA, 112-117. http://doi.acm.org/10.1145/

2094131.2094154

=


http://dl.acm.org/citation.cfm?id=1379249.1379255
http://dl.acm.org/citation.cfm?id=1379249.1379255
http://doi.acm.org/10.1145/3300115.3309516
http://doi.acm.org/10.1145/3197091.3197117
http://doi.acm.org/10.1145/3279720.3279741
http://doi.acm.org/10.1145/2543882.2543885
http://doi.acm.org/10.1145/2094131.2094154
http://doi.acm.org/10.1145/2094131.2094154

	Abstract
	1 Introduction
	2 Overview of CrowdSorcerer
	3 Lessons Learned
	4 Goals for the Future
	Acknowledgments
	References

