
Runestone: An Open-Source Platform for Interactive
Ebooks

Barbara J. Ericson
University of Michigan, School of Information

Ann Arbor, Michigan, USA
barbarer@umich.edu

Bradley N. Miller
Luther college / Founder Runestone Interactive

Minneapolis, Minnesota, USA
brad@runestoneinteractive.com

ABSTRACT
The Runestone platform is an open-source platform for interac-
tive ebooks. It served over 100,000 registered learners and an
average of 800 thousand page views per week during the 2019
- 2020 academic year. There are ebooks for secondary com-
puter science as well as for undergraduate computing courses:
CS1, CS2, data science, and web programming. There is even
an ebook for a course on Linear Algebra.

The platform supports executable and editable examples in
Python, Java, C, C++, HTML, JavaScript, Processing, and
SQL. It also includes code visualizers/steppers for Python,
Java, and C++ code [4]. The ebooks contain typical instruc-
tional material: text, videos, and images. They also include
practice problems with immediate feedback such as multiple-
choice, fill-in-the-blank, and matching questions. Runestone
also has unusual features such as audio tours of code, clickable
areas, adaptive Parsons problems, and a unique practice tool.
This paper highlights some of the unusual features, explains
the log data that is collected and is available for analysis, and
describes plans for future development.

Author Keywords
on-line learning, ebooks, adaptive learning, practice tools,
intelligent ebooks, Parsons problems, ACOS, LTI

INTRODUCTION
Brad Miller started creating the Runestone ebook platform in
2011. He wanted to have ebooks with embedded code that
the learner could run and edit. Brad also wanted ebooks to be
free so that everyone has the chance to learn computer science,
even if they can not afford a $200 textbook. Brad’s goal was

“democratizing textbooks for the 21st century".

UNUSUAL INTERACTIVE FEATURES
Runestone has several unusual interactive features. These
include audio tours of code, clickable area problems, adaptive
Parsons problems, and a practice tool.

Sixth SPLICE Workshop at L@S 2020 “Building an Infrastructure for
Computer Science Education Research and Practice at Scale”, SPLICE’20,
August 12, 2020, Virtual Event

In audio tours, lines of code are highlighted as audio plays that
explains those lines. This feature takes advantage of the fact
that humans can process both audio and visual information
at the same time [6, 7]. Teachers have reported that they find
audio tours useful since they model how to describe code [3].
However, most users do not listen to them [3].

A user answers a question by clicking on code or text in a
clickable area problem. These questions can be used to click
on parts of a program, such as the variable declarations. They
can also be used to click on items at specific indices in a list
or on words that indicate the required variable type. A log
file analysis has shown that most users attempt to solve these
problems.

In a Parsons problem, the learner places code blocks in the
correct order to solve a problem [8]. Parsons problems can
have extra blocks, called distractors, that are not needed in a
correct solution. In an adaptive Parsons problem the difficulty
of a problem is based on the learner’s performance. Rune-
stone supports two types of adaptation for Parsons problems:
intra-problem and inter-problem. In intra-problem adaptation
if the user is struggling to solve the current Parsons problem it
can dynamically be made easier by removing distractors from
the solution or by combining code blocks. In inter-problem
adaptation the difficulty of the next problem is modified based
on the learner’s performance on the last problem. The goal
is to keep the learner in Vygotsky’s Zone of Proximal De-
velopment where the learner is challenged, but not frustrated
[9]. Log file analysis has shown that most users attempt to
solve Parsons problems [3] and that users are nearly twice
as likely to correctly solve adaptive Parsons problems than
non-adaptive ones [2].

The practice tool in Runestone can be setup to provide students
points for correctly solving a specified number of problems
from an ebook each day for up to a maximum number of
days [10]. An algorithm selects a question on a topic when it
predicts the student is about to forget that topic.

LOG DATA
Runestone logs all user interaction in the ebook. Each log
entry includes the date and time (timestamp), user identi-
fier (sid), event, data about the event (act), item identifier
(div_id), course identifier (course_id), base course identifier
(base_course), chapter, subchapter, and institution identifier
(anon_institution). It logs page views, answers to any of the
practice problems, video plays, audio tour plays, and every

move of a block in a Parsons problem. Part of a log file is
shown in Figure 1. All of the code that is executed or saved is
also available in a separate log.

Figure 1. Part of a log file from Runestone that has been anonymized.

Researchers can request an anonymous log file from Brad
Miller. In this file user and institution identifiers will be re-
placed with numbers. Instructors who create a custom course
can download a log file directly from the instructor interface.

FUTURE WORK
Our plans for future work include LTI integration, ACOS
support, randomized exams, templated questions, support for
Peer Instruction, and new research on Parsons problems.

While Runestone has had some support for integration with
Canvas, Miller is adding support for LTI/ACOS to allow other
researchers access to the problems in Runestone ebooks.

We are also adding support for randomized exams where Rune-
stone will pick questions at random from a set of equivalent
questions in a question pool. This will make it harder for
students to cheat on exams with other students.

We plan to integrate support for both in-person and remote
Peer Instruction. Peer Instruction was originally developed
by Eric Mazur to improve student understanding in physics
[1]. In Mazur’s Peer Instruction students read material before
lecture and take an assessment based on the reading either be-
fore or at the beginning of lecture [1]. In lecture the instructor
displays a difficult multiple-choice question that contains dis-
tractors (incorrect answers) based on common misconceptions.
The students answer the question individually (vote), then
discuss their answers with neighboring students (peers), and
then answer (vote) individually again. Finally, the instructor
shows the result of the two votes and leads a discussion of the
question [1].

We plan to use log file analysis to determine the difficulty
of multiple-choice questions in the free ebooks in order to
create a pool of good questions for Peer Instruction. A good
question for Peer Instruction is one that about 40-60% of
the students get wrong on the first vote [5]. We will also
modify Runestone to make it easy to find, serve, author, and
modify Peer Instruction questions in an ebook. We also plan on

adding questions from public question banks (Peer Instruction
for Computer Science and the Canterbury Question Bank) to
Runestone as well.

While most students enjoy solving Parsons problems, some
would rather write the code themselves. We plan on providing
an option on Parsons problems to allow students to choose
to solve the equivalent write code problem with unit tests
instead. In addition, we want to scaffold students who are
having problems solving write code problems with unit tests
by providing them with a similar Parsons problem to their
current solution.

REFERENCES
[1] Catherine H Crouch and Eric Mazur. 2001. Peer

instruction: Ten years of experience and results.
American journal of physics 69, 9 (2001), 970–977.

[2] Barbara Ericson, Austin McCall, and Kathryn
Cunningham. 2019. Investigating the Affect and Effect
of Adaptive Parsons Problems. In Proceedings of the
19th Koli Calling International Conference on
Computing Education Research. 1–10.

[3] Barbara J Ericson, Kantwon Rogers, Miranda Parker,
Briana Morrison, and Mark Guzdial. 2016. Identifying
design principles for CS teacher Ebooks through
design-based research. In Proceedings of the 2016 ACM
Conference on International Computing Education
Research. 191–200.

[4] Philip J Guo. 2013. Online python tutor: embeddable
web-based program visualization for cs education. In
Proceeding of the 44th ACM technical symposium on
Computer science education. 579–584.

[5] Nancy Kober. 2015. Reaching students: What research
says about effective instruction in undergraduate science
and engineering. National Academies Press.

[6] Richard E Mayer. 2008. Applying the science of
learning: Evidence-based principles for the design of
multimedia instruction. American psychologist 63, 8
(2008), 760.

[7] Richard E Mayer and Roxana Moreno. 1998. A
split-attention effect in multimedia learning: Evidence
for dual processing systems in working memory.
Journal of educational psychology 90, 2 (1998), 312.

[8] Dale Parsons and Patricia Haden. 2006. Parson’s
programming puzzles: a fun and effective learning tool
for first programming courses. In Proceedings of the 8th
Australasian Conference on Computing
Education-Volume 52. 157–163.

[9] Lev Semenovich Vygotsky. 1980. Mind in society: The
development of higher psychological processes. Harvard
university press.

[10] Iman YeckehZaare, Paul Resnick, and Barbara Ericson.
2019. A Spaced, Interleaved Retrieval Practice Tool that
is Motivating and Effective. In Proceedings of the 2019
ACM Conference on International Computing Education
Research. 71–79.

	Introduction
	Unusual Interactive Features
	Log Data
	Future Work
	References

