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ABSTRACT
The role of an integrated IDE capable of several different key
features in teaching and learning programming is very clear
to everyone. In this work-in-progress paper, we present the
new version of our Caring IDE, a cloud-based IDE system
integrated with a Learning Management System (LMS), an
autograder, databases for storage, and dashboard prototypes
to (1) deliver a smoother programming learning experience
for students and (2) enhance the instructor’s ability to informa-
tively perform student success interventions quickly and early.
Here, we report and extrapolate on the design and implemen-
tation of the Caring IDE. We also demonstrate the value of the
Caring IDE in promoting student self-learning in an online,
introductory computer science (CS1) summer course during
the COVID-19 pandemic. Finally, we showcase preliminary
IDE-based analytics to promote student success in CS courses.

Author Keywords
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CCS Concepts
•General and reference → Design; Experimentation;
•Applied computing → Distance learning; Interactive
learning environments;

INTRODUCTION
Instructors of introductory programming courses often discuss
what an ideal Integrated Development Environment (IDE)
may be like to best aid students with their learning. Cloud-
based IDE’s are one related growing area that has capabilities
of integrating with systems like LMS (learning management
systems) and autograders. They also have potential for features
such as blocking and tracking possible plagiarism attempts.
In addition, having analytics and visualization tools would
provide a more interactive and real-time understanding of the
students’ progress.
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Learning analytics encompasses the analysis of data about
learners in order to gain insights and improve their overall ex-
periences [2, 21]. There has been an increased interest in learn-
ing analytics due to the availability as well as enhanced fea-
tures in collecting data of the students’ learning process [22].
To better understand learning and learners in computer sci-
ence, researchers have augmented learner-centered features
into their analytics such as: grades and other academic student-
performance metrics [31, 10, 1, 8], student characteristics from
surveys and reflections [19, 15, 18, 12], time spent on educa-
tional platforms [25, 17], course sequences [23], and novel
models of student states [8, 7].

IDE-based learning analytics has been one of the major focal
points for learning analytics researchers in which IDEs are
used to collect data about learner’s programming pattern and
deliver learning interventions [21]. IDE-based analytics has
many exciting possibilities for gaining better understandings
of novice programmers, predicting student performance, and
providing enhanced feedback to programmers on their errors.
Hundhausen et al. [21] proposed a four-phase process model
for IDE-based data analytics consisting of: (1) data collection,
(2) data analysis, (3) intervention design, and (4) intervention
delivery. Programming data collected from IDEs can include
include: (1) editing data (e.g., code snapshots), (2) compilation
data (e.g., compilation errors), (3) execution data (e.g., run-
time exceptions), and (4) debugging Data (e.g., breakpoints,
steps, and inspecting variables). This data comes in varying
forms making it difficult for collaborative research in the area.
To address this, Price et al. [27] propose a unified format of
IDE-collected data to encourage collaboration in IDE-based
analytics.

Our IDE, called the Caring IDE, integrates with our LMS
(Canvas) and an autograder (in our case, Codepost) with the
normal IDE functionalities to provide interactive and analyt-
ics feedback through the dashboards. Such functionalities
would help both instructors and students with the teaching
and learning of programming through actively practicing with
close-to-realtime feedback. More recently, with the onset of
COVID-19 and the fact that many courses have been and may



continue to be taught online, we have also begun to prioritize
the IDE’s interactivity to help promote self-learning. This
interactivity is so that students may get aid more quickly and
without necessarily needing the presence of an instructor or
teaching assistant (TA). For example, the IDE will collect in-
formation about the students’ programming habits (such as
frequent errors made) so that instant feedback may be pro-
vided to help them improve. Another example is the inclusion
of reflective prompts given to students after programming as-
signments to guide them in thinking about where they may
be struggling (i.e., string methods, loops, or arrays) and to
encourage additional practice in those areas.

In this work, we demonstrate the value of our custom cloud-
based IDE system in promoting student self-learning in an
online CS1 summer course during the COVID-19 pandemic.
We also showcase preliminary IDE-based analytics to pro-
mote student success in CS courses. The rest of this paper is
structured as follows. In the next section, we review literature
regarding IDE-based analytics in computer science education.
Next, we overview our Caring IDE system’s architecture fol-
lowed by a discussion of its features and our experiences using
it in an online CS1 course. Finally, we present a preliminary
analysis using synthetic student data and discuss our future
directions.

LITERATURE REVIEW
Several works in IDE-based Analytics try to predict student
performance [31, 10, 1, 8]. For example, Watson et al. [31] pre-
dict student performance in a computer science introductory
course by using programming features (e.g., code snapshots
upon compilation, compilation successes or failures, error
messages, and timestamps) logged from the BlueJ IDE. The
study reported that making less repeated errors and less time to
resolve a compilation error is associated with stronger course
performance [31]. Some works also took the next step and
extracted further features from code snapshots. For exam-
ple, Wang et al. [30] compare three different popular feature
extraction techniques on programming code blocks: bag-of-
words, and two abstract syntax tree features (n-grams and
pq-grams) for classifying the code behavior of novice program-
ming projects. Abstract syntax trees (ASTs) are code elements
represented as tree nodes. Code errors are often discouraging
to have; however, errors can be informative in understanding
what students struggle with. For example, Ahadi et al. [1]
analyzed SQL syntax errors and were able to identify concepts
that students struggle in. Some errors are not as informative,
perhaps to novice programmers, compiler errors may seem
cryptic. Becker et al. [3] conduct an intervention study and
report that enhanced Java compiler error messages reduced
the number of overall errors, errors per student, and several
repeated error metrics. With that in mind, several works ad-
dress syntax errors by automatically fixing syntax errors [4]
and generating hints to programmers [9, 28].

IDE-based analytics has also been used to study student be-
havior during programming exercises. Spacco et al. [29] use
CloudCoder [20], an online IDE used to practice programming,
to study the relationship between student exam performance
with several IDE-based features (compilation success rates,

time spent, exercises completed, etc.). Furthermore, IDE-
based analytics has enabled researchers to create novel student
state categorizations. For example, Carter et al [8] proposes
the Programming State Model (PSM), which “categorizes stu-
dents’ programming within a two-dimensional space that cap-
tures both a student’s current activity (e.g., editing, debugging)
and the correctness of the student’s most recently compiled
programming solution". Several works use IDE-based features
to categorize student programming experiences and student
states [7, 6].

ARCHITECTURAL OVERVIEW
In this work, we present a revised and improved system ar-
chitecture from our previous work [14]. The new architec-
ture is illustrated in Figure 1. As shown, the new system
displays a full-stack architecture which heavily utilizes cloud-
based API’s and microservices. The system includes several
major blocks, including the main IDE interface, dashboards,
microservices-based back-end and databases, learning analyt-
ics engine, and the integration submodule for the LMS and
autograder. In the figure, green components symbolize what is
already completed, yellow shows in-progress sections, and red
components are still in the design phase. These system blocks
would provide a spectrum of features and capabilities to the
students and the teaching staff, which are explained in more
detail in section 4.

The dashboards are designed to provide better access to avail-
able information inside the Caring IDE for both instructors
and students. The student dashboard is more specifically de-
signed to help students view information about their progress,
weaknesses, and potential areas of improvement. Inspired
by [9, 28] the future work hint-generator submodule provides
hints to students automatically based on their inferred coding
behavior. In our work-in-progress system, instructors would
get class-level descriptive statistics of IDE-based analytics, in-
cluding patterns of course-work submissions, coding attempts,
and compilation success and failure rates broken down by
assignment. The future work Machine Learning component
would detect students who are at-risk of not meeting course re-
quirements. Those students would be flagged for the instructor
on their dashboard.

The Caring IDE integrates with the autograder and LMS API’s
for grading, assessment, due-date updates, and integrity check
purposes. Currently, our system integrates with the autograder
Codepost, and Canvas, the LMS that our CS1 course uses.
With this integration, students experience a more uniform
and understandable process of accessing and submitting their
works directly inside the Caring IDE while grades will be
stored in the LMS. For the instructor, the assignments only
need to be created within the autograder, and then the IDE
pulls that information using the autograder’s API’s to display
to students.

These features were especially critical for our first time offer-
ing asynchronous and remote learning of the first programming
course. Students have less direct instruction and interactions
compared to traditional scaffolded active learning course mod-
els with additional lab sessions [16] and [17], which is why
uniformity is essential to prevent students frustration in finding



Figure 1. Architecture Diagram of the Integrated Caring IDE illustrating the database layer, API services, Learning Analytics, and Interface. Green
components are completed, yellow are in-progress , and red are future work.

tasks. The students’ reflections are also collected. Students
are asked after completing each course exercise about their
experience programming.

CARING IDE FEATURES
Our introductory programming course, ITSC 1212, has been
heavily team-based and followed the active learning pedagogy
in class as presented in [17, 13]. However, with recent events,
the course was made to switch to an online, asynchronous
structure for the Summer 2020 term. This created many obsta-
cles in how the course content would be presented to students
without deducting from their overall learning experience.

In an asynchronous class, there is no planned meeting time
for lectures or labs. The course content consisted of the same
material as previous semesters; however, it needed to be com-
pletely restructured in a way for students to still be able to
follow along without the guidance that may come with an
in-person class. Our class model includes closed lab to benefit
student learning through hands-on coding practice. Students
interact with each other throughout the labs to learn materials
better. Being able to keep lab functionalities in an online set-
ting was crucial. Our solution to this problem was the Caring
IDE. Here, we will discuss its various features, the reasoning
behind those features, and their educational benefits. The Car-
ing IDE is a web-based application where students can login
using account information provided by the instructor to then
practice and complete their programming work. One concern
of having an online, asynchronous course was the potential
complications which can result from requiring more advanced
IDE applications to be set up at the start of the semester. With
this web-based IDE, students would no longer have to go

through that initial set up process. Instead, they could then
immediately focus on settling into the course itself, adjusting
to the online environment, and learning the course material.

The Caring IDE is divided into three sections, as described
below:

• Assignment: Students will go to this area to work on their
large programming assignments. The instructions, due
dates, and other information about the assignment is pulled
from the autograder API. Student progress is saved as they
work, and once they are complete, they can submit directly
to the autograder tool from the IDE.

• General IDE: Here, students are provided with a blank area
for coding. This can be utilized for practice or for any other
lecture or lab homework activities which are not submitted
through the autograder API. Students are able to export the
programming file once complete and submit through the
separate LMS.

• Lab Activities: This is an area to practice lab activities.
Lab activities are created by an IDE administrator. In our
case, we inputted our own lab activities from the course so
that students could work on them from here. Once a student
is done, they can submit their work to view the answer
key and compare their code. Furthermore, students are
prompted to reflect on their work after submission, which
will be described further.

The Lab Activities section of the Caring IDE is designed in
a way to compromise for the lack of in-person interactions
(e.g., pair programming and in-class guidance). By providing



Figure 2. The top section shows a side by side comparison of a student’s coded solution versus a solution provided. On the bottom, the student is asked
to reflect on their work.

students with a side-by-side comparison of their submitted
code to a solution provided by the instructor, students are able
to get instant feedback from the IDE. It was often the case for
an instructor or TA to provide a live demo during the lecture
or lab as a way to help further explain concepts. It is also
beneficial for students to see various examples of programs
and to become aware that it is possible to program a solution
in more than one way. However, this can be difficult to do in
an online, asynchronous environment, and so this feature was
one way to try to fill that gap.

After providing this side-by-side comparison, the IDE also
prompts students to reflect on their work. This is shown in
Figure 2. By prompting students to reflect on their work,
there are benefits for both the students and the instructor. For
students, additional learning occurs in the reflective process.
For example, by reviewing their mistakes and intentionally
thinking about where improvements could be made, more
information is retained. Furthermore, students are able to see
different ways of problem solving so that they can explore
new methods and concepts they may be unfamiliar with. For
instructors, information collected from student reflections can
be used for various purposes such as tracking student progress,
or knowing which topics students may need additional support
in. For example, student reflections have been used previously
to predict early on which students are at risk of falling behind
so that interventions can be made [15].

On top of its many other benefits, the Caring IDE’s web-
based functionality can be white-listed within the LMS test-
taking browser (in our case, we used Lockdown Browser),
which is used to prevent plagiarism. This solves one of the
complications of transforming the course from in-person to
asynchronous. By being browser-based, students are able
to take lab tests within the test-taking browser while being
unable to diverge from the coding environment to search for
outside sources. To also help prevent possible plagiarism
during lab tests or assignments, students are unable to copy
or paste within the coding environment. This is a feature only
IDE administrators can toggle on or off, and can also prove
to be beneficial to students as it promotes self-learning and
encourages them to not rely on shortcuts that may take away
from their learning progress.

ANALYTICAL SAMPLES
In this section, we showcase various IDE-based analytical
figures from our instructor dashboard. The data used for demo
purposes has been synthesized based on real students activi-
ties in the IDE, using the DataSynthesizer [26] method as we
proposed previously in [11]. Figure 3 illustrates the relation-
ship between student on-time submissions of course work and
student final grades. We find that students who have done well
in the course have tended to submit on-time more frequently
(around 60% of the time) compared to those who have not
satisfied course requirements.



Figure 3. Comparison of on-time submission percentages based on the
final points and grades.

Figure 4. Comparison of successful compile percentages based on the
final points and grades.

Figure 5. Distribution of submission dates considering the due date.

Figure 4 highlights the relationship between successful com-
piles throughout the course and final grade of students. We
observe a negative relationship (with the exception students
receiving F’s), in which students who tend to perform well in
the course tend to compile code successfully more frequently.
Figure 5 showcases the distribution of student submissions
and the time-distance from due dates. We observe that most

submissions happen on the same day of the due date. On
the student reflections, we perform several text mining meth-
ods including log odds ratio [24], topic modeling (i.e. Latent
Dirichlet Allocation (LDA)) [5], and n-grams. Unfortunately
we did not collect sufficient data to provide preliminary results.

FUTURE WORK
We envision an IDE that collects substantial and informative
data points on students’ programming experiences to enable
close-to-real-time diagnostics and early interventions to en-
hance student coding experiences and learning. This vision
was discussed in the original model [14] and in this work, we
showcase further progress and details as illustrated in Figure 1.
In the future, we plan to incorporate a standardized data format
and protocols such as the one proposed by Price et al. [27] for
our IDE logs to enable collaboration. We also have plans for a
more complete integration along with many new features. For
example, grades are currently entered manually into Canvas
LMS by the teaching assistants after it is graded in the auto-
grader. In the future, the system will further utilize the Canvas
API’s so that grades can be automatically be transferred from
the system into Canvas. Furthermore, the hint-generator and
chatbot development is currently in the design phase and will
be our next major step. Lastly, we plan to add a Python com-
piler so that we can expand its usage for other courses, and
will then complete a thorough user study with students in our
upcoming semester.
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APPENDIX

Figure 6. In lab activity section, students can find list of activities which
are posted in LMS.

Figure 7. Explanation for each section in the developed IDE.

Figure 8. Student Calendar with assignment due dates retrieved from
the LMS and Caring IDE.

Figure 9. In the Assignment section, students can find list of assignments
from auto-grader API.

Figure 10. Explanation for the functionality of each action button in the
developed IDE.

Figure 11. Student Calendar with assignment due dates retrieved from
the LMS and Caring IDE.



Figure 12. Student Dashboard prototype of the Caring IDE illustrating student course performance, events, IDE-based metrics, and programming
concept recommendations.


	Introduction
	Literature Review
	Architectural Overview
	Caring IDE Features
	Analytical Samples
	Future Work
	References 

