
Recommending Personalized Review Questions using
Collaborative Filtering

Zain Kazmi
University of Toronto

Mississauga
zain.kazmi@utoronto.ca

Wafiqah Raisa
University of Toronto

Mississauga
wafiqah.raisa@mail.utoronto.ca

Harsh Jhunjhunwala
University of Toronto

Mississauga
harsh.jhunjhunwala@mail.utoronto.ca

Lisa Zhang
University of Toronto

Mississauga
lczhang@cs.toronto.edu

ABSTRACT
This paper presents the work in progress towards a tool
where CS1 students receive personalized review ques-
tions to prepare for their term tests. Specifically, the
tool recommends multiple choice and coding questions.
The recommendations are generated using collaborative
filtering, based on students’ past performance on these
questions. We test recommendation engine models based
on last year’s student data, and present offline experi-
ments that show the promise of this approach.

Author Keywords
CS1, Collaborative Filtering, Machine learning,
Recommendation Engine

INTRODUCTION
With increasingly large class sizes in computer science
courses, it is difficult for students to receive personalized
feedback on how to study and improve. We aim to help
our CS1 students revise for their term tests by providing
each student with a set of personalized review questions.

The CS1 course at our institution uses an educational
computer programming platform called PCRS [3] to de-
liver some course content. PCRS pairs video-based in-
struction with relevant pre-lecture and post-lecture exer-
cise questions. Our goal is to re-purpose and recommend
some of these questions for students to review, and inte-
grate the review tool into the PCRS platform.

As a proof-of-concept, we build collaborative filtering
models that predict the questions that will likely chal-
lenge students. We use historical data consisting of CS1

Sixth SPLICE Workshop at L@S 2020 “Building an Infrastructure for
Computer Science Education Research and Practice at Scale”, SPLICE’20,
August 12, 2020, Virtual Event

Week Question
Type

Num
Stu-
dents

Num
Prob-
lems

Percent
Stu-
dents
Solved

Avg At-
tempts
Until
Solved

1-4 MC 1,055 128 99.7% 2.44
1-4 Code 1,044 41 98.4% 2.89
5-8 MC 1,029 87 99.5% 3.48
5-8 Code 978 20 96.5% 3.84
9-12 MC 961 98 99.5% 3.33
9-12 Code 845 18 96.6% 3.87
All MC - 313 99.7% 2.78
All Code - 79 97.9% 3.23

Table 1. Data Submission Distribution

student attempt history to build these models. We hope
to test the effectiveness of a recommendation engine ap-
proach in an actual CS1 course environment.

BACKGROUND AND RELATED WORK
Although our task of recommending previously-seen con-
tent for test revision differs from helping students navi-
gate new content [1], we take some inspiration from the
recommendation system approach of [5]. Additionally,
EduRank [4] uses a collaborative filtering approach that
predicts student performance over study questions using
the historical student performance.

PCRS DATA
The CS1 course at our institution has between 800-1100
students. In each of the 12 weekly modules, students
use PCRS to watch a set of videos, and complete a set
of multiple choice, short-answer, and coding questions.
These questions are graded for correctness, and students
can re-attempt a question any number of times. In fact,
94% of students re-attempt questions before term tests.
PCRS collects interaction and performance data. In par-
ticular, the platform logs student attempts to each ques-
tion. We re-purpose the historical record from a past
term to evaluate collaborative filtering approaches to re-
view question recommendation.



Model FCP MAE Hardest5
Random 0.49 2.39 33%
Baseline 0.76 1.35 60%
KNN 0.76 1.23 60%
SVD (dim=50, epochs=20) 0.77 1.27 61%
SVD++ (dim=50, epochs=1) 0.75 1.35 60%
Test Results
SVD (dim=50, epochs=20) 0.76 1.26 58%
KNN 0.76 1.24 55%

Table 2. Collaborative Filtering Performance

The historical data contains 313 multiple choice ques-
tions and 79 coding questions with at least one stu-
dent submission. It also contains submissions from 1,057
unique students, including 896,031 submissions to mul-
tiple choice questions and 244,384 submissions to code
questions. We randomly split the students into 846 stu-
dents in the training and validation sets, and 211 stu-
dents in the test set.

Table 1 summarizes our data. We split the course into
three portions, since there are major term tests after
weeks 4, 8, and 12. Note that there are fewer but longer
questions in later weeks, and students require more at-
tempts on average to solve later questions. Still, a vast
majority of the students eventually solve these questions.

COLLABORATIVE FILTERING MODELS
To build the recommendation models, we compute the
number of times that each student attempts each ques-
tion until they obtained full marks. This value is a proxy
for the student perceived difficulty of the question: the
higher the attempt, the more challenging the question.
Since we wish to recommend questions that a student
will find challenging, we treat the number of attempts
until correct as the student’s rating of the question. In
other words, an element of the rating matrix represents
the number of times a student attempted a question un-
til solving the question, with the maximum allowed at-
tempt set to 15. For the small number of students who
attempted but did not solve a question, we assign the
max rating of 15.

We use the Python library surprise [2] to build the
collaborative filtering models. We experiment with a
baseline model that takes into account the average dif-
ficulty of a question, a nearest-neighbour approach, and
singular value decomposition approaches.

COLLABORATIVE FILTERING RESULTS
We use 5-fold cross-validation to test each model, and
use the held-out test set to compute the test statistics
for the best models. In our validation set, we randomly
select and remove 15 ratings from each student, and use
the model to predict those 15 ratings. We use 3 differ-
ent metrics to measure the performance. The Fraction
of concordant pairs (FCP) and the Mean Average Error
(MAE) are standard metrics computed using the library
surprise. Furthermore, for each row in our validation

Model Metric Fold1 Fold2 Fold3 Fold4 Fold5
Baseline FCP 0.763 0.763 0.766 0.759 0.760
SVD FCP 0.766 0.771 0.772 0.758 0.769
Baseline MAE 1.372 1.384 1.328 1.333 1.326
SVD MAE 1.296 1.296 1.242 1.268 1.248
Baseline Hard5 60.2% 59.3% 60.7% 60.0% 60.0%
SVD Hard5 60.4% 61.5% 61.1% 60.4% 60.8%
Table 3. Comparison of SVD and Baseline over 5 folds

set, we predict the “Hardest 5” of the 15 removed rat-
ings, and compute the accuracy compared to the ground-
truth. This metric is important because our primary goal
is to recommend problems, so the order of the predictions
matter more than the predicted ratings.

We add two baselines to help interpret the performance
metrics. The “random” baseline assigns a prediction
from a normal distribution centered on the average rat-
ings for the student and the question. The “baseline”
model is similar but does not introduce randomness.

Table 2 shows that SVD model performs marginally bet-
ter than other models when predicting user ratings. The
baseline is strong, since the variation in question diffi-
culty explains much of the data. Still, Table 3 shows
that the SVD model over-performs the baseline in every
one of the 5 folds, so the difference between the models
is not just due to noise.

DISTANCES IN QUESTION VECTORS
The SVD model assigns a vector to each question. One
way that we can evaluate these vectors is to explore the
similarities between them. To that end, we compute the
average cosine similarity between the vectors of ques-
tions with the same content tag shown in Table 4. These
tags describe the content of the question. Each question
can have more than one tag, and not all questions have
tags. The average similarity over all question vectors
was 0.086. Table 4 shows that the average cosine simi-
larity between problems with similar tags is significantly
higher, suggesting that the SVD model embeds similar
problems closer together.

Tag: Class function return loops bool for if str
MC 0.28 0.20 0.29 - 0.20 0.40 - -
Code 0.27 0.21 0.26 0.17 0.24 0.34 0.23 0.21

Table 4. Average Cosine Similarity of Question Vectors
(overall avg=0.086)

CONCLUSION AND FUTURE WORK
We explore a collaborative filtering system for recom-
mending revision questions to CS1 students, and com-
pared the offline performance of the SVD and SVD++
approaches. We also show that the embedding space
of the questions is meaningful. Our ultimate goal is to
test the efficacy of this collaborative filtering based rec-
ommendation system in improving CS1 student perfor-
mance. We intend to compare the collaborative filtering
recommender to a random recommender, and compare
real student performance across various term tests.



Acknowledgements
We would like to thank Andrew Petersen for providing
access to the PCRS data, and Brian Li, Scarlett Tran and
Hassaan Mustafa for development and logistical support.

REFERENCES
[1] Tyne Crow, Andrew Luxton-Reilly, and Burkhard

Wuensche. 2018. Intelligent tutoring systems for
programming education: a systematic review. In
Proceedings of the 20th Australasian Computing
Education Conference. 53–62.

[2] Nicolas Hug. 2017. Surprise, a Python library for
recommender systems. http://surpriselib.com.
(2017).

[3] Andrew Petersen. 2013. PCRS.
https://mcs.utm.utoronto.ca/ pcrs/pcrs/. (2013).
Accessed: 2019-01-20.

[4] Guy Shani and Bracha Shapira. 2014. Edurank: A
collaborative filtering approach to personalization
in e-learning. Educational data mining (2014)
(2014), 68–75.

[5] Leen-Kiat Soh, Todd Blank, LD Miller, and
Suzette Person. 2005. ILMDA: An intelligent
learning materials delivery agent and simulation.
In 2005 IEEE International Conference on Electro
Information Technology. IEEE, 6–pp.


	Introduction
	Background and Related Work
	PCRS Data
	Collaborative Filtering Models
	Collaborative Filtering Results
	Distances in Question Vectors
	Conclusion and Future Work
	References 

