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ABSTRACT
This paper presents the work in progress towards generat-
ing automatic feedback to student solutions to CS1 coding
questions that highlights regions of the code that may be prob-
lematic. We use a Recurrent Neural Network to generate such
feedback. We use a data-driven approach to train the model by
re-purposing past student submissions and student corrections
to their own code. We present preliminary results of a model
that works on one problem. We hope to eventually integrate
this kind of feedback in a CS1 setting.
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INTRODUCTION
CS1 students typically receive feedback to programming ques-
tions in the form of unit test passes and failures. Such feed-
back is immediate, but does not help students understand why
their solution may be incorrect. To that end, many Computer
Science educators have developed ways to provide students
automated and personalized feedback and hints [11, 9, 5, 12].

We would like to automatically generate feedback for submis-
sions to programming problems by highlighting regions of
the code that may be incorrect, where a student should pay
particular attention. The feedback should identify both syntax
and semantics issues. This approach is similar to the task of
automatic bug detection and automatic bug correction [2, 14],
though students should correct their own bugs.

We build a machine learning model that localizes errors in
CS1 student code. We use a data-driven approach similar
to that of [12]: we use past student submissions to program-
ming problems, and the corrections that past students make
to their own code. The model is summarized in Figure 2. We
show preliminary results of the model trained on past student
submissions to the programming problem in Figure 1.
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def check_password(passwd: str) -> bool:
"""
A strong password has a length greater than or equal
to 6, contains at least one lowercase letter, at
least one uppercase letter, and at least one digit.
Return True iff passwd is considered strong.

>>> check_password(’I<3csc108’)
True
"""

Figure 1. The CS1 programming question that we study.

Term Split Submissions Students Pairs
2015 Train/Valid 7,131 768 419
2016 Train/Valid 8,869 816 515
2017 Train/Valid 11,456 1,066 755
2019 Train/Valid 6,310 880 559

2018 Test 3,676 375 247
Table 1. Summary of data used for training, validation and test.

RELATED WORK
Automatically locating and fixing bugs is an important prob-
lem with a rich literature [13]. Bhatia and Singh [2] corrects
syntax errors by combining a generative recurrent neural net-
work with a heuristic algorithm. Gupta et al. [6] uses a multi-
layer sequence-to-sequence network with attention to locate
bugs, and correct them one-by-one. Pu et al. [14] correct both
syntax and semantic errors by using a modified sequence-to-
sequence network. We also draw inspiration from the work
of Allamanis et al. [1] and Bhoopchand et al. [3], who uses
sequence-of-tokens representation and neural representations.

STUDENT CODE SUBMISSIONS DATA
The CS1 course at our institution uses a flipped classroom, and
delivers course content using an online educational computer
programming platform called PCRS [10]. The system pairs
video-based instruction with multiple choice, short-answer,
and Python coding questions. Coding questions include those
similar to Figure 1. Students receive immediate feedback when
completing these questions, in the form of unit-test outputs.

PCRS collects interaction and performance data, and logs stu-
dent attempts to each question. We repurpose the historical
record from 2015-2019 to train our model. For our prelimi-
nary model, we use student submissions for the single coding
question in Figure 1.

We extract pairs of consecutive submissions submitted by the
same student, where the earlier submission does not pass all
unit tests, but the later submission does pass all unit tests. We
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Figure 2. RNN model for generating visual feedback.

keep only consecutive submissions where less than 30% has
changed. The difference between the two submissions is key,
as we use it to generate ground-truth labels for identifying
which part of the incorrect code should be changed. We hold
out the 247 consecutive submission pairs from the 2018 term
for testing, and split the remaining data from the other terms
into 1,987 for training and 221 pairs for validation.

To generate the ground-truth classification labels for the ear-
lier, incorrect submission, we identify tokens that changed
in the later, correct submission. We use the Python libraries
tokenize and difflib to tokenize both submissions into se-
quences of tokens, and compare these sequences. We annotate
each token in the earlier code submission with one of 6 labels,
shown in Table 2.

1. Token unchanged 2. Token removed 3. Token replaced
4. Token unchanged +
new token appended

5. Token removed +
new token appended

6. Token replaced +
new token appended

Table 2. The six label classes that we use to annotate each token in the
incorrect submission code.

CODE HIGHLIGHT RNN MODEL
The Recurrent Neural Network Model for localizing bugs
is shown in Figure 2. We represent each code submission
as a sequence of tokens, extracted using the Python library
tokenize. We normalize the token sequences by prepend-
ing a newline token (to capture addition of code at the very
beginning), and replacing function and variable names with
canonical names (like func1, func2, var1, var2) for consis-
tency across similar programs with different variable names.

The neural model has three trainable layers: an embedding
layer that maps each unique token to a vector, a bi-directional
GRU [4] layer, and a classification layer that predicts the label
of each token. We also use Batch Normalization [7] before the
final classification layer, which prevents overfitting.

We build and test two variations of the model in Figure 2. In
the “6-Class” model, we use the labels in Table 2, and perform
6-way classification on each token. In the “Binary” model,
we combine classes 2-6 and perform binary classification on

Figure 3. Example feedback generated using our model on an element
of the test set. The model identifies the actual issue in line 2, but also
highlights the unusual bitwise & operations in the last line.

whether the token needs to be modified. We choose an em-
bedding size of 128, a GRU hidden size of 128, cross-entropy
loss, and the Adam optimizer [8] with a learning rate of 0.001.
We used the validation sets to select these hyperparameters.

RESULTS
Table 3 shows the model accuracies. Since the labels are heav-
ily imbalanced, we report three other accuracy measures (1)
“Unchanged” accuracy over all unchanged tokens, (2) “Binary”
accuracy in identifying tokens that requires modification, with-
out regard for the actual label, and (3) “Modified” accuracy in
correctly classifying a token in classes 2-6. Note that for the
“Binary” model, we cannot compute the latter figure because
we combined these class labels.

6-Class Model Binary Model
Accuracy Train Valid Test Train Valid Test
Overall 99.3% 97.2% 96.0% 99.6% 97.2% 97.0%
Unchanged 99.8% 99.0% 99.1% 99.8% 99.1% 99.5%
Binary 84.7% 39.2% 31.8% 93.7% 34.3% 26.4%
Modified 83.9% 35.5% 8.6% N/A N/A N/A

Table 3. Model accuracy over tokens with various class labels.

The binary classification accuracy for the 6-class model is
about 32%. We did not yet fine-tune the model, and always
predict the most likely token. The 6-class and binary models
has an Area Under the ROC Curve (AUC) of 0.829 and 0.832,
respectively.

Figure 3 shows one particularly interesting example of feed-
back generated on a test set code. Our model highlights the
actual semantic issue on line 2, but also highlights where the
return statement uses bitwise & rather than logical and, even
though using the bitwise operation still passes the unit tests.

CONCLUSION AND FUTURE WORK
We build a preliminary RNN model for locating bugs in stu-
dent code to be used for providing feedback on which part of
their code a student should pay particular attention to. This
model shows promise in being able to identify both syntax
and semantic errors. We hope to leverage more recent ap-
proaches in program representation to develop tools to help
CS1 students receive better automated feedback.
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