TYPOS: A Computer Science Exercise Platform

Adam M. Gaweda
North Carolina State University
Raleigh, NC, USA
agaweda@ncsu.edu

ABSTRACT

Computer Science has a number of exercise types available for
learning. However, it is unknown when the appropriate exercise
type should be given to students on their path to learning CS. This
paper describes TYPOS, a Computer Science Exercise Platform
that hosts a variety of exercise types. These CS exercises range in
complexity and interactivity based on the ICAP framework. As
part of this paper, we provide a brief overview over each exercise
type and their respective complexity. Finally, we present consider-
ations for future research on using TYPOS for activity sequence
mining and suggested next practice activities for students.

Author Keywords
computer science exercise, exercise type, activity sequences

CCS Concepts

*Social and professional topics — Computing literacy;
Model curricula; *Applied computing — Interactive learning
environments;

INTRODUCTION

Learning Computer Science (CS) is difficult and college-level
introductory CS courses often experience high attrition rates
[2]. CS is a combination of the absolute rigor of mathematics
and logic with the flexibility of planning and problem solving.
However, this combination creates many issues for novices
attempting to learn the domain. There are lower-level aspects,
such as constructing semantically valid sentences from syntax, to
higher-level aspects, such as problem decomposition and subgoal
generation; each of which novices struggle to learn.

CS Education often experiments with different types of learning
aids. These additional aids often come in the form of exercise
types, providing learning opportunities through a variety of tasks
[12]. These exercise types come in the form of worked examples,
typing exercises, Parsons Puzzles, debugging erroneous code,
self-explanation, or traditional programming exercises. Each of
these exercise types can be mapped to Chi’s ICAP framework,
which categorizes different types of activities based on their
user engagement (interactive, constructive, active, and passive,
respectively) [5]. By increasing the level of engagement, the

Sixth SPLICE Workshop at L@S 2020 “Building an Infrastructure for
Computer Science Education Research and Practice at Scale”, SPLICE’20,
August 12, 2020, Virtual Event

Collin F. Lynch
North Carolina State University
Raleigh, NC, USA
cflynch@ncsu.edu

learner engages in information seeking and must process the
activity at a finer detail than passively observing it.

However, many of the studies that use these aids only focus
on the benefits of a single exercise type. Each type reinforces
different elements, but a particular exercise may not be the most
appropriate intervention for a given student at that point in time.
Ericsson presents a similar criticism about considering all types
of practice equal [8]. Some activities only benefit particular skills,
for example Parson’s Puzzles improving code writing but not
code reading [6]. Similarly, high complexity exercises like self-
explanation are only found beneficial for more knowledgeable
students [1]. Thus, determining the appropriate learning activity
for each student can be a non-trivial manner while learning CS.

TYPOS EXERCISE PLATFORM

In an effort to study the most appropriate exercise to present
students, we have developed TYPOS (named for how common
syntax errors are in programming). TYPOS is a Computer Science
Exercise Platform where students are presented with various novel
exercise types'. The platform was designed to allow instructors
to place exercises in modules within a course. Prior research in-
volving TYPOS showed self-selected students that regularly com-
pleted typing exercises performed better in the course and submit-
ted less syntax errors in course programming projects [9]. Since
that publication, we have expanded TYPOS to support eight (8)
different exercise types for CS practice. We list each exercise type,
its ICAP category, and a description of the exercise in Table 1.

In addition to supporting a variety of exercise types, TYPOS
records student activity within exercises. Students are given a
heartbeat that monitors when a student begins an exercise, their
engagement during the exercise, when they make an incorrect
submission, and when they make a correct submission. Each
submission is also stored with the feedback given to the student.
This allows researchers to build an accurate timeline of events
while the student is practicing on the platform.

TYPOS also allows for ‘tags’ to exercises. Tags allow instructors
and researchers to provide metadata about the exercise, such
as the particular CS concepts used, prerequisites necessary for
the exercise, or specific techniques employed. For example, an
exercise the requires loops could be tagged with variable and
conditional prerequisites and indicate the use of the ‘Gatherer’
role from the ‘roles of variables’ literature [11].

MINING ACTIVITY SELECTION
Incorporating additional practice options would provide re-
searchers the opportunity to mine activity selection. However, it

Thttps://research.csc.ncsu.edu/arglab/projects/typos/



Exercise Type ICAP Category | Description

Typing Exercises Active Retype worked examples of completed code template [9].

Fill in the Blank Active Replace a blanked out segment with the appropriate code or syntax keyword [1].
Parsons Puzzles Constructive Reassemble shuffled code segments into the appropriate order [6].

Output Prediction Constructive Analyze a snippet of code to determine the value of a variable or output of the snippet [12].
Documenting Code | Constructive Create a documentation string describing how a snippet of code operates [1].

Find the Bug Constructive Highlight the area of a snippet of code where an error occurs.

Fix the Bug Interactive Locate and resolve errors in a snippet of code [4].

Coding Exercises Interactive Implement a coding solution given a problem statement.

Table 1. Computer Science Exercise Types Supported by TYPOS with its ICAP category and brief description

becomes a non-trivial task to determine which exercise is most ap-
propriate as the number of exercise types increases. Randomizing
exercise types would no longer be a feasible baseline without com-
promising the ultimate goal of teaching students. Randomly se-
lecting higher complexity exercises types too soon would be inef-
fective for lower-performing students and could lead to frustration.

Another approach would be to allow students to select which
exercise type to practice next with a final module competency
test to show proficiency. Allowing students to select their practice
regimen would then open the door to researchers to study the
exercise types selected. Lower-performing or slower learning
students would be able to receive equitable practice opportunities
while higher-performing or faster learning students would not
need to practice already learned objectives [7]. This would allow
researchers to analyze individual practice behaviors that may
support proposed learning theory models.

Analyzing activity sequences have been used to recommend
e-textbook links [3], but can expand beyond passive reading to
include additional learning activities. Similar approaches have
found success on a smaller scale, by using student behaviors to
suggest ‘next-step’ hints while learning block-based programming
[10]. In Price’s work, students that requested a hint were provided
with adaptive hints pointing to similar, correct solutions. This
approach could be adopted to practice recommendations where
a correct solution was passing the module competency test.

CONCLUSION

In this paper, we presented TYPOS, a CS Exercise Platform
designed to provide students with different exercise types
while learning Computer Science. TYPOS monitors student
behaviors within the platform and can be used to study exercise

effectiveness, student exercise selection, and activity sequences.

These activity sequences are beneficial to both instructors and
designers of intelligent tutoring systems. Activity sequences that
identify struggling students could suggest appropriate lower-level
practices to ensure learning. As activity sequencing becomes
more well-defined, instructors and intelligent tutoring systems
will be able provide a tailored list of practice problems for each
student based on their needs.

REFERENCES
[1] Robert K Atkinson, Sharon J Derry, Alexander Renkl, and
Donald Wortham. 2000. Learning from examples:

Instructional principles from the worked examples research.

Review of educational research 70, 2 (2000), 181-214.

[2] Jens Bennedsen and Michael E Caspersen. 2019. Failure
rates in introductory programming: 12 years later. ACM
Inroads 10, 2 (2019), 30-36.

[3] Peter Brusilovsky. 2012. Adaptive hypermedia for
education and training. Adaptive technologies for training
and education 46 (2012), 46-68.

[4] Nick Cheng and Brian Harrington. 2017. The Code
Mangler: Evaluating Coding Ability Without Writing any
Code. In Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education. 123-128.

[5] Michelene TH Chi and Ruth Wylie. 2014. The ICAP
framework: Linking cognitive engagement to active
learning outcomes. Educational psychologist 49, 4 (2014),
219-243.

[6] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008.
Evaluating a new exam question: Parsons problems. In
Proceedings of the fourth international workshop on
computing education research. ACM, 113-124.

[7] Shayan Doroudi and Emma Brunskill. 2019. Fairer but not
fair enough on the equitability of knowledge tracing. In
Proceedings of the 9th International Conference on
Learning Analytics & Knowledge. 335-339.

[8] K Anders Ericsson. 2016. Summing up hours of any type of
practice versus identifying optimal practice activities:
Commentary on Macnamara, Moreau, & Hambrick (2016).
Perspectives on Psychological Science 11, 3 (2016),
351-354.

[9] Adam M Gaweda, Collin F Lynch, Nathan Seamon, Gabriel
Silva de Oliveira, and Alay Deliwa. 2020. Typing Exercises
as Interactive Worked Examples for Deliberate Practice in
CS Courses. In Proceedings of the Twenty-Second
Australasian Computing Education Conference. 105-113.

[10] Thomas W Price, Rui Zhi, Yihuan Dong, Nicholas Lytle,
and Tiffany Barnes. 2018. The impact of data quantity and
source on the quality of data-driven hints for programming.
In International Conference on Artificial Intelligence in
Education. Springer, 476-490.

[11] Jorma Sajaniemi. 2002. An empirical analysis of roles of
variables in novice-level procedural programs. In
Proceedings IEEE 2002 Symposia on Human Centric
Computing Languages and Environments. IEEE, 37-39.

[12] Greg Wilson. 2019. Teaching Tech Together: How to Make
Your Lessons Work and Build a Teaching Community
around Them. CRC Press.



	Introduction
	TYPOS Exercise Platform
	Mining Activity Selection
	Conclusion
	References 

