Learnersourcing at Scale for Introductory Programming:
Longitudinal Data Collection on the Python Tutor Website

Philip J. Guo Julia M. Markel Xiong Zhang
UC San Diego UC San Diego University of Rochester
La Jolla, CA, USA La Jolla, CA, USA Rochester, NY, USA

ABSTRACT

The Python Tutor website (pythontutor.com) currently gets
over 10,000 daily active users executing around 100,000 pieces
of code daily. We have been experimenting with collecting
large-scale data about learners’ thought processes while cod-
ing. For instance, we created a learnersourcing system that
elicits explanations of potential misconceptions from learners
as they fix errors. We have deployed this system for the past
three years to the Python Tutor website and collected 16,791
learner-written explanations. By inspecting this dataset, we
found surprising insights that we did not originally think of due
to our own expert blind spots as programming instructors. We
are now using these insights to improve compiler and run-time
error messages to explain common novice misconceptions.

INTRODUCTION
(This is a 2-page lightning paper that summarizes our Learn-
ing@Scale 2020 work-in-progress paper [2].)

Novices suffer from a large variety of misconceptions when
learning computer programming, ranging from misunderstand-
ings about syntax to incorrect mental models of code execu-
tion [4]. To help novices out, experts often write explanations
for common misconceptions, but a fundamental shortcoming
of this approach is that experts can suffer from the expert blind
spot [3], also known as the curse of knowledge: They forget
what it was like to be a novice, so they have a hard time em-
pathizing with novice struggles. As a result, their explanations
might be incomplete or inadvertently use jargon that is too
advanced for novices to properly comprehend.

To help overcome these expert blind spots, we took a learn-
ersourcing approach [5] where we built a system to collect
crowdsourced explanations of programming misconceptions
by using learners as the crowd. We deployed this system
within Python Tutor [1], an online code editor and visual de-
bugger with tens of thousands of daily active users and over
ten million total users so far (Figure 1). Our intuition is that
by prompting learners there to provide explanations at the
exact moment they overcome a particular coding struggle, we
can collect a corpus of written explanations that can augment
educational materials to overcome common expert blind spots.

Sixth SPLICE Workshop at L@S 2020 “Building an Infrastructure for
Computer Science Education Research and Practice at Scale”, SPLICE’20,
August 12, 2020, Virtual Event

Python 3.6
Frames Objects
def listSum(numbers):
if not numbers: Global frame function
listSum(numbers)
return @ listSum
else:

(f, rest) = numbers
td return f + listSum(rest) 1] e
listSum
myList = (1, (2, (3, None))) numbers
total = listSum(myList) 11

Edit this code rest

myList tuple

line that just executed
= next line to execute ElsRem)

numbers
<Prev | Next> fl2
Step 11 of 22 rest

Figure 1. Python Tutor [1] lets users write code (left) and see how it
executes step-by-step with visualizations of its run-time state (right).

We deployed this system online for three years (2017-2020)
and collected 16,791 learner-written explanations spanning a
variety of novice coding misconceptions. By inspecting these
explanations, we (as experienced programming instructors)
have found surprising insights that we did not originally think
of due to our own expert blind spots. We can use these insights
to augment tools with more novice-friendly explanations.

LEARNERSOURCING SYSTEM PROTOTYPE

Figure 2 shows our system prototype embedded within the
Python Tutor website: a) The user can directly write code on
the site or copy-paste in code examples and problems they
are working on from online tutorials. They will inevitably
encounter errors when they are coding, which are either syntax
errors or run-time errors. Figure 2a shows a run-time error
when line 3 is executed, with Python reporting ‘“Unbound-
LocalError: local variable ‘y’ referenced before assignment.”
These message are hard for novices to understand [4] since
they use technical jargon and do not indicate why someone
might have made that error (i.e., what their misconception
was). Syntax errors in Python show even less helpful mes-
sages, most commonly “SyntaxError: invalid syntax.” b) After
they eventually fix the error, here by adding ‘global y’ on
line 3, they run the code again and the error is gone. c¢) At
that moment, our system pops up a dialog showing the user’s
previous code, its error message, and the question “What mis-
understanding do you think caused this error?”” d) The user can
write a response or dismiss the dialog. Hopefully they write
an explanation using terms that fellow learners can empathize
with better than Python’s built-in error messages; in this exam-
ple, the user wrote “‘global’ needed when both global & local
variable have same name.” Their text is saved to our corpus,
along with the history of their coding session, which includes
both the erroneous and fixed code. This way, we collect the
learner’s thoughts right at the moment when they just fixed
an error so that their misconception is at the top of their mind.

pythontutor.com

Python 3.6

Frames Objects

You just fixed this error from the last time your code ran:
1 y=123
2 def foo():
B3 print(y)
4 y = 456
5 foo()

y = 123
a) def foo():
=i print(y) Python 3.6
y = 456
foo() - y = 123
Edit this code def foo():
line that has just executed b global y
=+ next line to execute print(y)
y = 456
foo()
<= First <Back Step6of7 Forward > Last >>
a) Edit this code

UnboundLocalError: local variable 'y’ referenced before assignment

Help improve this tool by clicking whenever you learn something:

e | just cleared up a misunderstanding!| |Ijust fixed a bug in my code!

UnboundLocalError: local variable 'y' referenced
before assignment

Please help us improve this tool with your feedback.
What misunderstanding do you think caused this error?

d) ‘global' needed when both global & local variable have same name|

Submit Close

Hide all of these pop-ups

Figure 2. a) The user encounters an error while coding in Python Tutor, b) fixes their code and re-runs, c) sees a pop-up box showing the error they just
fixed, and d) writes an explanation about what misconception led them to make that error. e) The user can also write freeform explanations at any time.

Our prototype automatically pops up a dialog whenever the
user fixes a syntax or run-time error. Note that since it only
detects that an error message has disappeared, it is possible
to get false positives when the user, say, completely changes
their code in between attempted executions. In that case, the
original error may be gone, but they simply moved on without
trying to fix it. In the future, we could heuristically suppress
false positives by taking diffs between code executions and
not popping up a dialog box if the code diff is too large.

This prototype can collect explanations for a variety of er-
rors that novices encounter, which include both compile-time
(syntax) and run-time errors that Python automatically flags.
However, it is possible for code to execute to completion with-
out Python issuing any errors, but it still produces incorrect
results. These are known as semantic or logic errors [4], and
they are impossible for a system to detect without a test suite.
Since Python Tutor users mostly write freeform code without
a test suite, we wanted to provide a way to collect learner-
sourced explanations for semantic errors. Thus, we added two
buttons to the bottom of the interface, shown in Figure 2e. The
user can click either “I just cleared up a misunderstanding!”
or “I just fixed a bug in my code!” at any time, which then
prompts for a written explanation. These buttons give users
a way to share freeform explanations for moments when they
get a sudden insight about what is wrong with their code

PRELIMINARY FINDINGS

We deployed this feature to Python Tutor in 2017, so we have
collected over three years of data so far. We only looked at
data for Python 3, which is the most common language that
learners write on the website. (Other supported languages
include Python 2, Java, JavaScript, C, and C++.) Learners
submitted 16,791 explanations that were at least 10 characters
long. That is an average of around 10 submissions per day.

We discovered a variety of misconceptions including: 1) Lin-
guistic: These reveal learners’ troubles mapping between the
syntax of natural languages (e.g., English) and code syntax.
Our own expert blind spots caused us to never think about
many of these since we had been programming for so long
that code syntax came “naturally” to us. But learners wrote
insightful explanations for errors including capitalization, sin-
gular/plural forms, and implicit pronoun references in code.

2) Mathematical: Since many introductory programming prob-
lems deal with numbers and math, we discovered some sur-
prising misconceptions from mapping between the syntax of
math and code, such as uses of equals and assignment state-
ments. 3) Polyglot: Finally, many learners came to Python
from other languages like Java, C, C++, or JavaScript. As
polyglot programmers, they wrote explanations for some com-
mon cross-language errors such as API naming mismatches
and syntactic differences. See our paper for more details [2].

This preliminary analysis revealed some of our own expert
blind spots as programming instructors. While many miscon-
ceptions seem apparent in retrospect, we never even considered
many of them before reading these learner-submitted expla-
nations. Some of these have been reported in prior studies
mostly from classroom settings [4], but the novel contributions
of our scalable technique and large data set are: 1) We can au-
tomatically collect data that tells us exactly which Python error
messages map to specific misconceptions, and how frequently
those occur in the wild. 2) We logged all of the code that led
to those errors, which we can later distill into error-inducing
code snippets. 3) We have explanations written in the learners’
own words, which can help us create custom error messages
using terminology that learners can better relate to.

Acknowledgments: This material is based upon work sup-
ported by the National Science Foundation under Grant No.
NSF IIS-1845900.

REFERENCES
[1] Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-based
Program Visualization for CS Education (SIGCSE ’13). ACM.

Philip J. Guo, Julia M. Markel, and Xiong Zhang. 2020.
Learnersourcing at Scale to Overcome Expert Blind Spots for
Introductory Programming: A Three-Year Deployment Study on the
Python Tutor Website. In Conference on Learning @ Scale (L@ S "20).

Mitchell J Nathan, Kenneth R Koedinger, and Martha W Alibali. 2001.
Expert blind spot: When content knowledge eclipses pedagogical
content knowledge. In Proceedings of the third international conference
on cognitive science. Beijing: University of Science and Technology of
China Press, 644—-648.

Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and
Other Difficulties in Introductory Programming: A Literature Review.
ACM Trans. Comput. Educ. 18, 1, Article 1 (Oct. 2017).

[5] Sarah Weir, Juho Kim, Krzysztof Z. Gajos, and Robert C. Miller. 2015.
Learnersourcing Subgoal Labels for How-to Videos (CSCW ’15). ACM.

[2

—

,_
W
—

[4

=

	Introduction
	Learnersourcing System Prototype
	Preliminary Findings
	References

