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ABSTRACT
This paper introduces a new type of smart learning content, an
automatically generated trace table, that can easily integrate
and adapt to existing curriculum and learning systems for
computer science education. In addition to current features
of the software, we describe how this tool constructs trace
tables using only source code as an input. The potential of
this tool is also explored by examining future opportunities
in adaptation, feedback, and learning specifications. Last, we
report a pilot integration into an existing system to demonstrate
interoperability with a tangible use case.
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CCS Concepts
•Social and professional topics → Computing educa-
tion; •Applied computing → Interactive learning environ-
ments;

INTRODUCTION
Computer science educators have long been tasked with devel-
oping content and curriculum for their courses and learning
experiences, playing a fundamental role in their success. These
materials often are created in static forms, such as textbooks,
HTML documents, or simple learning systems. While ad-
vances in learning technologies have produced smart learning
content (SLC) which incorporates interactivity, data collection,
and adaptation [1], educators may be reluctant to abandon tried
and tested curriculum they have spent precious time develop-
ing and refining. Similarly, older systems that utilize static
content or have low levels of interactivity might still be valued
for their infrastructure or past collected data.

Such issues create barriers to adopting newer SLC, poten-
tially resulting in these new technologies being underutilized.
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Instances such as these call for content-agnostic tools that
can automatically adapt to existing curriculum and materials,
rather than forcing educators to use new content or spend
time recreating their own. These differ from content-agnostic
platforms such as MOOCs and learning management systems
mainly concerned with distribution of learning materials [7].
Rather these dedicated tools function as SLC that enhance
learning with engaging and interactive material while remain-
ing agnostic to material within that particularly domain. Such
tools are also embeddable into many different environments to
easily integrate into existing content and methods of delivery.

CODE-AGNOSTIC TOOLS
In the domain of computer science, content-agnostic tools
can be conceptualized as code agnostic, which we define as
producing a learning activity using only source code as an
input. While not a panacea for all code, such approaches
scale to a wide variety of programs. Prior code-agnostic tools
emerged as program visualizations like Python Tutor which
used execution traces for line-based visualization of a pro-
gram’s execution [4]. Similarly, Jsvee utilized a transpiler to
automatically generate expression-level visualizations from
a piece of code [8]. While both excellent examples of code-
agnostic tools, they fall into the domain of worked examples
which are not well suited for assessing student knowledge or
actively engaging them in applying such knowledge. Some
programming construction environments like PCRS [10] and
Turing Craft’s Code Lab (http://turingscraft. com/) are par-
tially code-agnostic but require the writing of test-cases to
automatically assess the program which can be time consum-
ing to create. Our proposed approach is to further build off
fully automated methods by creating a scaffolded assessment
which can collect fine grain data on student’s knowledge.

TRACE TABLE
A trace table is a technique used to track variable changes
throughout a program’s execution by creating columns of vari-
ables with their respected values. This technique is applicable
to many different type of programs and has long been used
via pen and paper. Prior work has identified program trac-
ing as an applied strategy [3] and studied the application of a
paper based approach [2, 9] on performance. Our proposed
tool creates automatically generated SLC from source code,
producing a trace table exercise with interactivity, feedback,
and data collection. This is accomplished by utilizing variable
change information produced from execution traces to create



Figure 1. A Quizjet Problem (left) and a Trace Table (right) generated from the same program

an interactive table that prompts users to input the values of
variables while stepping through the program.

The trace table interface, as shown in Figure 1, contains the
code to be traced, progress bar, and a dynamically generated
table. The current line being evaluated is highlighted and an
input field appears in the correspond cell of the variable to
be updated. The step and line number act as an index for
the rows of the table as students gradually fill out the cells
to trace the execution of code. Feedback is currently limited
to correct or incorrect, first providing a number of wrong
attempts until marking the cell incorrect and providing the
answer. The software utilizes execution traces (produced by
debuggers) from the backend of Python Tutor [4] to build the
table using a single-page application framework. This allows
for the dynamic construction of the trace table, adding rows as
students progress in an effort to reduce cognitive load.

Similarly, the web based technology is embedable into other
platforms, tutors, and web environments. Inclusion of a
JavaScript file provides an API to load code, configure set-
tings, and access student data. Reporting of interactions is
achieved through a state management framework which can
utilizes middleware to flexibly track user interface changes.
Knowledge components (KCs) are automatically associated
with each line by utilizing the abstract syntax tree when pars-
ing the code [5]. This allows for a more fine-grain evaluation
of student knowledge, identifying the specific line and associ-
ated concepts where a user might struggle. The end result is a
code-agnostic tool which can augment existing systems with
scaffolding, assessment, and student modeling.

PILOT INTEGRATION
To evaluate the utility of our trace table software, we piloted
integration into an existing system that utilized static code.
Quizjet [6] is a platform that provides parameterized questions
and automated assessment for predicting the end result vari-
able or system output of a piece of code. This system has
been used for over a decade to author problems and assess
student knowledge, generating more than 45,000 transactions

from over 600 students. Quizjet’s means of assessment is
holistic, rather than fine-grained, resulting in less accurate
assessment of student errors. In addition, the approach is less
interactive than the trace table which engages students through
a step-by-step analysis of the code.

In this manner, the trace table was embedded into the system
(shown in Figure 1) to augment Quizjet’s problems by offering
additional scaffolding to students for their prediction tasks.
Even though Quizjet is over 10 years old, integrating the trace
table took little effort and was able to cover 66 existing Quizjet
problems. Upon integration, we began using the system in
classroom studies and also recitations. The trace table has
now been used by 115 students and over 500 tables have been
completed. This has generated a substantial amount of fine-
grained data for an optional activity. In less than a year, over
7,500 transactions have been collected.

SUMMARY AND FUTURE WORK
In future work, we will report the impact the trace table had
on student performance and learning. In addition, this tool has
many opportunities for optimizing efficiency while remaining
code-agnostic. Since the domain modeling is automated, we
can implement various adaptations based on student knowl-
edge to reduce the time of the task and keep students engaged.
Similarly, automatically generated feedback could help clarify
errors for students. Incorporating other forms of interaction,
such as self explanations, might also yield deeper levels of
comprehension. Such features will further augment the trace
table to align more with those found in intelligent tutoring sys-
tems while requiring little effort to adapt to existing content.
These improvements, and the incorporation of standards and
protocols such as xAPI and LTI, would further make this an
ideal tool for collaborating and sharing with the community.
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