
ProgSnap 2: Towards a Standard Representation for
Programming Process Data

David Hovemeyer
dhovemey@ycp.edu

York College of Pennsylvania

Kelly Rivers
krivers@andrew.cmu.edu
Carnegie Mellon University

ABSTRACT
Systems that collect data on student programming activity provide
a valuable source of information on how students learn to program.
The diversity of information collected by such systems presents a
challenge for analyzing data sets, especially for studies involving
data originating from multiple systems. For this reason, having
a standardized representation for student programming activity
would be useful. ProgSnap 2 is a proposed standardized representa-
tion for programming snapshot data. It is intended to be sufficiently
flexible to accommodate data from a wide variety of sources, and its
tabular format is designed to permit direct analysis using statistics
software.

KEYWORDS
computer science education, snapshot representation, student pro-
gramming data
ACM Reference Format:
David Hovemeyer and Kelly Rivers. 2018. ProgSnap 2: Towards a Standard
Representation for Programming Process Data. In SPLICE ’19: SPLICE Work-
shop 2019, February 27th, 2019, Minneapolis, MN . ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Recent years have seen increased interest in automated systems to
help students learn to program[2, 4]. The data collected by these
systems is a valuable source of insight on how students learn to
program. Due to the diversity of data collected, analyzing such
data sets can be challenging, especially when data from multiple
sources are involved. For this reason, a standardized format for
programming activity data would be useful.

ProgSnap 2 is a proposed specification for representing program-
ming activity data. It has two main design goals. The first is to be
flexible enough to represent data from a variety of sources. The sec-
ond is to permit direct analysis using statistics software. ProgSnap 2
incorporates ideas from previous proposed standards, including
DATASTAND and ProgSnap[3].

This paper briefly summarizes ProgSnap 2. See Price et al.[5]
and the draft specification[1] for a more complete description.

2 OVERVIEW OF PROGSNAP 2
In the ProgSnap 2 data format, we represent student data using a
main event table, which stores information about student actions,
and a collection of payload files, which store the actual student
work. Each row in the event table refers to an individual payload
file, so that researchers can do analysis at a high level but still

SPLICE ’19, February 27th, 2019, Minneapolis, MN
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

refer to more detailed data at need. In this paper, we will primarily
discuss the main event table and the code representation; for more
detail, refer to the official specification.

The main event table contains a series of rows, where each row
represents a student action. The columns then represent different
properties of these actions, where some columns are mandatory
and many are optional. We have designed the event table this way
to allow data collectors the freedom to store as much or as little data
as they wish to, while still keeping certain necessary data points
consistent between data sets. The mandatory columns include:

• Event Type: the type of event which took place. Examples
include Session.Start, Compile.Error, File.Edit, and Run.Test

• EventID: a unique ID for the event
• Order: a number that provides an ordering between this
event and others. This ordering is not guaranteed to be per-
fect, but it provides the best guess at ordering by the data
provider

• SubjectID: an ID referring to the student/user who per-
formed the action

• ToolInstances: a string containing all of the tools used in
the action. This includes the programming language, IDE,
and any external tools

• CodeStateID: the ID of the Code State connected to this
action

There are too many optional columns to include in this paper,
so we will instead highlight a few properties of interest to data
providers and researchers:

• ServerTimestamp/ClientTimestamp: many data collec-
tors reported having difficulty synchronizing events col-
lected on the client-side versus the server-side. We provide
two optional columns to allow the most accurate data repre-
sentation possible, while the Order column still provides an
overall ordering for simple analysis.

• CourseID/AssignmentID/ProblemID: there are several
columns that can be used to identify the specific context of
a problem-solving event, if that context is known.

• ExperimentalCondition: the string in this column can be
used to clearly identify whether the data was collected as
part of a study, and which condition the event should be
associated with.

• EditType/EditTrigger: these columns allow for further in-
formation to be provided on edit events (via a set of enumer-
ated values), while still allowing analysis of general file edits
without extra data processing.

• CompileMessageType/CompileMessageData: these
columns allow for more generalized study of compiler errors,
by capturing both the general error type and specific data.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SPLICE ’19, February 27th, 2019, Minneapolis, MN David Hovemeyer and Kelly Rivers

• InterventionType/InterventionMessage: the protocol
also tracks the results of interventions commonly used in
programming studies, such as hint messages.

As is shown in the mandatory CodeStateID column, each event
is associated with a code state, which is stored outside of the main
event table. As code states vary widely across different contexts,
these states can be represented using one of three separate recom-
mended formats. This allows for consistency in analysis while not
requiring data providers to force their data into a format that does
not match their needs.

• Table Format: this format is used to represent small data
sets where each snapshot is a single file of small size, and
where all code is text-based. All code states are stored in a
single CSV file which contains two columns: CodeStateID
and Code. The Code column then stores all the code present
in the state.

• Directory Format: this format is used to represent data
sets that are medium-sized, with potentially more than one
file per snapshot. Each code state is stored in a different
directory inside the CodeStates directory, where the name
of the directory is the CodeStateID.

• Git Format: this format is used to represent data sets that
are particularly large or contain many files per snapshot.
It uses a single Git repository to store all of the separate
snapshots. Each CodeStateID is then the ID of the commit
which, when accessed, represents the state of the code at
that action.

3 CURRENT STATUS AND FUTUREWORK
As of the time of writing, the contributors to the ProgSnap 2 stan-
dard are working on implementing tools to export data from several
automated assessment systems to ProgSnap 2 format. Once we have
a reasonable variety of ProgSnap 2 data sets, we intend to work
on analysis tools. Performing analysis on data sets from multiple
systems will be an important step in validating the usefulness of
the ProgSnap 2 standard.

We are interested in working with providers and consumers of
student programming data in order to help ensure that ProgSnap 2
is broadly useful. The authors welcome contact from anyone inter-
ested in participating in this effort.

REFERENCES
[1] Progsnap 2. https://cssplice.github.io/progsnap2/, 2019. Accessed: 2019-01-18.
[2] Kirsti M Ala-Mutka. A survey of automated assessment approaches for program-

ming assignments. Computer Science Education, 15(2):83–102, 2005.
[3] David Hovemeyer, Arto Hellas, Andrew Petersen, and Jaime Spacco. Progsnap:

Sharing programming snapshots for research (abstract only). In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education, SIGCSE
’17, pages 709–709, New York, NY, USA, 2017. ACM.

[4] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. Review of
recent systems for automatic assessment of programming assignments. In Pro-
ceedings of the 10th Koli Calling International Conference on Computing Education
Research, Koli Calling ’10, pages 86–93, New York, NY, USA, 2010. ACM.

[5] Thomas W. Price, David Hovemeyer, Kelly Rivers, Austin Cory Bart, Andrew
Petersen, Brett A. Becker, and Jason Lefever. Progsnap 2: A flexible format for
programming process data. In Proceedings of the 2nd Educational Data Mining in
Computer Science Education (CSEDM) Workshop, Tempe, AZ, 2019.

https://cssplice.github.io/progsnap2/

	Abstract
	1 Introduction
	2 Overview of ProgSnap 2
	3 Current status and future work
	References

