Exploring the use of unit tests, linters, and format checkers to
enhance computer-programming instruction

Paul Salvador Inventado
pinventado@fullerton.edu
California State University Fullerton
Fullerton, California

ABSTRACT

It takes a lot of practice to master a complex skill like programming.
Computer Science instructors provide as much programming exer-
cises as they can to students, but struggle with the time and effort
required for creating problems, checking, and providing feedback
on students’ solutions. Many instructors have used unit tests, which
are programs that compare the output of student programs against
expected results, to check for code correctness then manually check
coding style and design. We are currently building a framework to
explore the use of linters and format checkers in addition to unit
tests to check the design and style of code written in C++. These
tools catch common issues that significantly speeds up checking.
We used the framework to create a programming-problem reposi-
tory that instructors can use to assign exercises in class. Informal
interviews with instructors indicated that the addition of linters and
format checkers helped encourage their students to use coding best
practices. We have also begun to store log data from the automated
checkers. We plan to use these data for analyzing student progress
in solving programming problems and gathering insights that can
help inform instructor feedback.

CCS CONCEPTS

« Social and professional topics — CS1; - Software and its
engineering — Software testing and debugging,.

KEYWORDS

programming exercises, programming problem repository, unit
testing, linter, coding style

ACM Reference Format:

Paul Salvador Inventado. 2019. Exploring the use of unit tests, linters, and
format checkers to enhance computer-programming instruction. In Proceed-
ings of ACM Conference (Conference’17). ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Programming is a complex skill that involves several processes.
First, it requires a good understanding of several interrelated con-
cepts to design an algorithm that solves a given problem. Second,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

programmers need to implement their algorithms using a program-
ming language. Third, they need to decipher error messages when
they compile or run their code. Finally, they need to modify their
code to fix syntactical and logical errors that will then satisfy the
requirements of the programming problem.

Students need to practice all these processes to refine their pro-
gramming skills. Instructors can help students learn by supporting
them in each step, but this can be challenging in a classroom setting
where many students request help at the same time.

We have been developing an open programming problem repos-
itory which contains problems that instructors can use in class and
automated tests that can help instructors check and give feedback
to students. We are also starting to collect data from students’ inter-
action with the system so that we can investigate how it contributes
to student learning and find new ways to support them.

2 AUTOMATED CHECKING AND FEEDBACK

There are several tools that programmers use to help them verify
the correctness and design of their code. We investigate the viability
of three such tools to support student learning: unit tests, linters,
and code formatters.

2.1 Unit tests

Unit tests are used to validate code behavior. Such tests often com-
pare the output of code that is tested against expected output given
specific inputs. Figure 1 shows the results of a unit test that checks
the behavior of a user-defined power function.

Running unit test
Running 3 tests from 1 test case.
Global test environment set-up.
3 tests from Power
Power.OQutputFormat
Power.OutputFormat (2 ms)
Power.PositiveBase
Power.PositiveBase (1 ms)

Power.NegativeBase
Power.NegativeBase (0 ms)
3 tests from Power (4 ms total)

Global test environment tear-down
3 tests from 1 test case ran. (4 ms total)
3 tests.

Figure 1: The results of a googletest-based unit test that
checks the behavior of a user-defined power function
against three test cases.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

Instructors can use unit tests to check student code by designing
test cases that validate important aspects of their code. They can
assign points to every test case that passes and zero or partial points
to those that fail.

Students can also run unit tests to check their programs against
the test cases defined by their instructor. Test results do not only
provide students with immediate feedback but also frees up the
instructor’s time to answer other students’ questions.

2.2 Linter

A linter is a tool that diagnoses common programming errors, style
violations, or bugs. Figure 2 shows the results of a linter that high-
lights two potential bugs in the code.

6 warnings generated.

6 warnings generated

7957 warnings generated.

/home/student/Desktop/temp/power-function/problem/power. cpp:5:38:
statement should be inside braces [google-readability-b

races-around-statements]

for (int a = 1; a < power_input; at++)

/home/student/Desktop/temp/power-function/problem/power.cpp:6:8:
The left expression of the compound assignment is an uni

nitialized value. The computed value will also be garbage [clang-

analyzer-core.uninitialized.Assign]

result *= base_input;

/home/student/Desktop/temp/power-function/problem/power.cpp:4:1:
'result' declared without an initial value
int result;

Figure 2: Results generated by clang-tidy, a C++ linter, on
students’ code. Specifically it suggests using curly braces to
enclose any code block regardless of length and suggests ini-
tializing variables.

Unlike unit tests, linters focus less on coding errors and more on
best practices which also allow it to evaluate the design of students’
code. Interestingly, they are quite useful for uncovering and fixing
logical errors as shown in the example.

2.3 Code formatter

Code formatters are usually used to fix the spacing, indentation, and
line length to make code easier to read. Many text editors and IDEs
provide this functionality already. Figure 3 shows the differences
between a students’ code and a preferred code format using a diff
program.

Code formatters are not problem-specific, but they help make
the code more readable and easier to debug. Novice programmers
can benefit a lot from this tool because they often forget to indent
their code. In many cases, students immediately figure out their
errors after fixing code formatting. Instructors can also use this
checker as a measure of code readability.

3 OPEN PROGRAMMING PROBLEM
REPOSITORY
We have been developing an online repository of programming

problems that are distributed with unit tests, linters, and code for-
matters. We plan to share this repository with other instructors to

Inventado

[Checking main.cpp]

[Checking power.cpp]
--- /dev/fd/63 2019-02-27 01:30:24.143714682 -0800
+++ /dev/fd/62 2019-02-27 01:30:24.143714682 -0800

int power(int base input, int power input) {

}

[Checking power.hpp]

Figure 3: The results of a diff program comparing students’
code and the preferred way of formatting code.

help them provide more practice problems to their students. More
importantly, we hope to reduce the effort required for checking stu-
dents’ solutions and free up instructors’ time so they can focus on
answering higher-level questions while the tools provide students
with low-level feedback.

The repository is hosted on GitHub! and contains around 145 pro-
gramming problems mainly designed for C++. It uses the googletest?
library for unit tests, clang-tidy® as the linter, and clang-format*
for code formatting.

4 INSIGHTS AND FUTURE WORK

Informal interviews with instructors revealed that they appreciated
the amount of time the repository saved them from creating and
checking problems on their own. However, they felt less control
over the problems unless they modified it to fit their need. Advanced
students felt it was useful for helping them quickly debug their
code and validate their own tests, but felt the tests limited their
coding style. Novice students liked getting immediate feedback
because they don’t get stuck waiting for their instructor to help
them. However, it took time for them to learn how to interpret the
test outputs before they can use it.

We just started collecting data from students’ interactions with
the three tools. Specifically, we take snapshots of the students’
code at the time they run a tool and also keep a log of the results it
generates. We plan to use the data to answer the following questions
in our future work:

e How much time do unit tests, linters, and code formatters
save from answering programming problems?

o Are the tests useful or do they disrupt student learning?

e How much time and effort do the tools save for checking
and grading student solutions?

Uhttps://github.com/ilxl-ppr
Zhttps://github.com/google/googletest
3https://clang llvm.org/extra/clang-tidy
“https://clang.llvm.org/docs/ClangFormat.html

	Abstract
	1 Introduction
	2 Automated checking and feedback
	2.1 Unit tests
	2.2 Linter
	2.3 Code formatter

	3 Open programming problem repository
	4 Insights and future work

