
Integrating OpenDSA and CodeWorkout with the Canvas LMS
Ayaan M. Kazerouni, Jackson Wonderly, Stephen H. Edwards, Clifford A. Shaffer

ayaan@vt.edu,jacdw94@vt.edu,s.edwards@vt.edu,shaffer@vt.edu
Virginia Tech
Blacksburg, VA

ABSTRACT
There exist numerous “smart learning tools”, each serving different
purposes. A primary challenge associated with these tools is getting
them to work together smoothly and with minimal overhead for the
end-user (e.g., instructors or students). We describe the infrastruc-
ture behind the integration of two learning tools with the Canvas
LMS. This infrastructure is LTI compliant and is in use at several
US universities.

OpenDSA is an e-textbook project that allows instructors to
create custom books by putting together combinations of available
modules, and CodeWorkout is an online system that serves short
programming exercises and multiple-choice questions. We describe
the implementation that allows OpenDSA textbooks to serve Code-
Workout exercises within Canvas. OpenDSA does this by being a
“man in the middle”, i.e., by functioning both as a tool consumer
(facing CodeWorkout) and as a tool provider (facing Canvas).

KEYWORDS
interoperability, LTI, learning management system, smart content
ACM Reference Format:
Ayaan M. Kazerouni, Jackson Wonderly, Stephen H. Edwards, Clifford A.
Shaffer. 2019. Integrating OpenDSA and CodeWorkout with the Canvas
LMS. In Proceedings of SPLICE ’19. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
OpenDSA [3] is an open e-textbook project that allows users to
choose from available modules to put together a custom textbook
for a course. CodeWorkout [1] is an online system that serves
short programming exercises and multiple-choice questions, either
in a public setting (for voluntary practice) or in a course setting
(with deadlines, time limits, and other policies in place). OpenDSA
includes several CodeWorkout exercises in its modules, which even-
tually make into textbooks used in several US universities.

In this paper we describe the implementation of the interoperabil-
ity between OpenDSA and CodeWorkout. Specifically, we describe
how the two tools can be used together in a single course, embed-
ded in the Canvas Learning Management System (LMS). While on
the backend OpenDSA and CodeWorkout are separate entities that
maintain their own databases and servers, on the frontend they
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLICE ’19, February 27, 2019, Minneapolis, MN
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

are presented as a single learning tool, giving the instructor and
students a more cohesive experience. This is possible using the LTI
protocol for communication.

2 BACKGROUND
We describe some terms:

• Learning Management System (LMS): A system to orga-
nize and deliver learning content and monitor students. Two
examples are Canvas and Moodle.

• Tool Provider: Sometimes also called “smart content”, these
tools are learning tools providing specific pieces of function-
ality for an instructor or student. For example, OpenDSA
provides e-textbook capabilities, and CodeWorkout provides
programming exercises. Both are tool providers.

• Tool Consumer: A system that provides extension points
to which tool providers may attach their functionality. For
example, Canvas is a tool consumer that “consumes” the
functionality provided by both OpenDSA and CodeWorkout.

Under the LTI protocol, tool providers embed tool consumer
windows using i-frames, and communication between the two takes
place by transferring user, assignment, and grade information. As
a concrete example, to serve CodeWorkout programming exercises
within Canvas, CodeWorkoutwould be the tool provider, and Canvas
the tool consumer that displays CodeWorkout windows and receives
assignment outcomes from CodeWorkout.

3 PROBLEMS FACED IN THE PAST
In the past, we used OpenDSA and CodeWorkout as independent
tool providers to Canvas. Both systems communicated indepen-
dently with Canvas, unaware of each others’ existence. OpenDSA
would initialize the course modules using the Canvas API, mak-
ing Canvas point to OpenDSA modules where appropriate, and
CodeWorkout exercises where appropriate. This led to certain “pain
points”, both technical and pedagogical.

Grade passback. OpenDSA had neither control over nor access
to the information being sent from CodeWorkout to Canvas. As an
interactive e-textbook, OpenDSA contains numerous proficiency
exercises of its own, including multiple-choice questions and algo-
rithm analysis exercises. Programming exercises relating to a topic
would ideally be treated as part of the proficiency exercises for that
topic. However, because of the independent LTI communication
undertaken by CodeWorkout, OpenDSA had no idea of whether or
not students had completed the programming exercises associated
with a module. That is, OpenDSA could not tell if the student had
truly completed the module, only that they had completed the parts
provided by OpenDSA.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SPLICE ’19, February 27, 2019, Minneapolis, MN A. M. Kazerouni and J. Wonderly

Content integrity. As a textbook, OpenDSA necessarily contains
prose alongside its numerous interactive widgets (proficiency ex-
ercises, algorithm visualizations, etc.). The primary idea was to
have students read the prose as well as practice using these widgets.
CodeWorkout programming exercises can be thought of as just an-
other widget included within OpenDSA, similar to Khan Academy
multiple choice questions.

With CodeWorkout functioning as a separate LTI tool provider,
however, its programming exercises would manifest as separate
Canvas modules, i.e., each one on its own page, by itself 1. This
breaks the flow of the “textbook”, and worse, separates the prose
from the exercise, making it difficult and unattractive for the student
to read the related prose before or while working on the exercise.
Unobtrusive embedding. CodeWorkout’s main use case is not
to be embedded in an LMS or e-textbook. CodeWorkout serves
numerous courses and contexts that may use OpenDSA, Canvas,
both, or none. Thismeans that any infrastructure that aims to embed
CodeWorkout exercises in itself must do so using an unobtrusive
protocol, i.e., that can work with CodeWorkout’s existing extension
points. An example of such a protocol is LTI, and that is what we
have used here (§4).

4 OUR APPROACH
Fundamental to the problems described above is that OpenDSA
and similarly classed tools like MasteryGrids [2] function on a
more managerial level than tools such as CodeWorkout. That is,
OpenDSA curates, organizes, and presents content to the student,
often from multiple sources, of which CodeWorkout is just one.

According to the definitions in §2, both OpenDSA and Code-
Workout are tool providers to the Canvas LMS, a tool consumer.
However, to students and instructors, these relationships are not
evident or intuitive. That is, a student is first and foremost interact-
ing with a Canvas module, which happens to be an OpenDSA
section or chapter. That section or chapter might or might not
include a related CodeWorkout programming exercise. Our cur-
rent design does not implement this mental model, and this has
led to considerable technical debt trying to keep the three systems
(Canvas, OpenDSA, and CodeWorkout) functioning in harmony.

Our solution was to change OpenDSA’s LTI communications
such that, where it used to function only as a tool provider to Canvas,
it now also functions as a tool consumer to CodeWorkout. OpenDSA
embeds CodeWorkout exercises in itself, and CodeWorkout sends
grade and user information to OpenDSA, not to Canvas. This simple
change comes with a number of virtues:
LTI compliance. It is still completely LTI compliant, with only
small unobtrusive changes being made to CodeWorkout to facilitate
it. This approach would allow OpenDSA to embed multiple tool
providers into its e-textbooks, as long as they are LTI compliant.
Conceptual integrity.We now implement the mental model de-
scribed above. OpenDSA is the textbook being embedded in Canvas,
and CodeWorkout is simply a programming exercise widget being
embedded in OpenDSA.

1This is due to the fact that LTI tool providers are embedded inside modules or
assignments, and in Canvas, we typically have one module or assignment per page.

Content integrity. OpenDSA can embed CodeWorkout exercises
alongside the prose and other widgets, thus maintaining the in-
tegrity of the textbook.
Grade passback. Grades for a module’s deliverables can be or-
ganized and presented less disparately. For example, Canvas can
display that the student has completed all assignments associated
with the module on Binary Search Trees, including algorithm visu-
alizations, proficiency exercises, and CodeWorkout programming
exercises. This is made possible because CodeWorkout no longer
maintains its own channel of communication with Canvas. Instead,
it sends all data through OpenDSA, which can receive it and inter-
pret it as it sees fit. This communication between the two learning
tools is hidden from Canvas, which only knows that it is embedding
an OpenDSA module.

REFERENCES
[1] Stephen H. Edwards and Krishnan Panamalai Murali. 2017. CodeWorkout: Short

Programming Exercises with Built-in Data Collection. In Proceedings of the 2017
ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’17). ACM, New York, NY, USA, 188–193. https://doi.org/10.1145/3059009.
3059055

[2] Tomasz D. Loboda, Julio Guerra, Roya Hosseini, and Peter Brusilovsky. 2014.
Mastery Grids: An Open Source Social Educational Progress Visualization. In
Open Learning and Teaching in Educational Communities, Christoph Rensing, Sara
de Freitas, Tobias Ley, and Pedro J. Muñoz-Merino (Eds.). Springer International
Publishing, Cham, 235–248.

[3] Clifford A. Shaffer, Ville Karavirta, Ari Korhonen, and Thomas L. Naps. 2011.
OpenDSA: Beginning a Community active-eBook Project. In Proceedings of the 11th
Koli Calling International Conference on Computing Education Research (Koli Calling
’11). ACM, New York, NY, USA, 112–117. https://doi.org/10.1145/2094131.2094154

https://doi.org/10.1145/3059009.3059055
https://doi.org/10.1145/3059009.3059055
https://doi.org/10.1145/2094131.2094154

	Abstract
	1 Introduction
	2 Background
	3 Problems Faced in the Past
	4 Our Approach
	References

