
Communicating using Program Traces

Chris McDonald
Computer Science and Software Engineering

University of Western Australia
Crawley, WA 6009, Australia

chris.mcdonald@uwa.edu.au

Matthew Heinsen Egan
Australian Centre for Geomechanics

University of Western Australia
Crawley, WA 6009, Australia

matt.heinsenegan@uwa.edu.au

ABSTRACT
Supported by the growth of embedded devices, the IoT, and
modern standardization, C remains an important language
for undergraduate students. However, when presented to
relatively inexperienced programmers, its very limited run-
time support is a source of frustration for both students and
educators, alike.

SeeC is a novice-focused tool for the C programming lan-
guage that displays and records the execution of programs,
detects runtime errors, and enables students to review their
programs’ data and execution history. Students can deter-
ministically replay a program, and reason backwards from
a runtime error to determine its true cause. The approach
can lead to students’ reduced frustration and greater under-
standing of program behaviour.

This presentation provides a brief overview of SeeC and
a discussion on how its program traces provide an opportu-
nity for students to communicate their questions and mis-
understandings with educators, and for educators to provide
examples and debugging challenges to students.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
K.3.2 [Computers and Education]: Computer and In-
formation Science Education

Keywords
Novice programmers, debuggers

I. MOTIVATION
The standard C programming language can be especially

difficult for newcomers. In particular, pointers and manual
memory management can present difficulties both in under-
standing at a conceptual level, and in debugging the la-
conically described runtime errors which result from their
misuse. Most newly developed novice-focused debugging
systems are designed for object-oriented programming lan-
guages, as introductory teaching has focused on these lan-
guages, and the most notable tools developed to assist novice
C programmers are predominantly unmaintained.

Research from the fields of programming languages and
compilers has developed many advanced debugging tech-

SPLICE Spring 2019 Workshop, CS Education Infrastructure for All II: En-
abling the Change in conjunction with ACM-SIGCSE 2019, Minneapolis,
27th Feb 2019.

niques, but they are typically only supported by tools de-
signed for expert programmers, rather than for novices. The
complexity of these tools, and the time required to learn
their use, at even a modest level, are often insurmount-
able hurdles for novice students. Furthermore, while these
tools can be used to locate runtime errors, they do not as-
sist novice programmers to understand those errors, or more
generally to understand the behaviour of their programs.

Several novice-focused tools have implemented graphical
program visualizations and automatically generated expla-
nations of program behaviour. These features have been
shown to assist novice programmers with constructing knowl-
edge and debugging programs in numerous evaluations, such
as those described by [1], [9], [2], and [5]. However, few of
these tools have supported the C programming language,
and those that do are typically incomplete or unmaintained.

SeeC introduced a novice-focused systems for creating graph-
ical visualizations of the runtime memory state of C lan-
guage programs, and for generating natural language expla-
nations of C program fragments. It is built upon a previously
developed novice-focused debugging system for the C pro-
gramming language, augmenting the existing runtime error
detection and execution tracing with program visualizations
and natural language explanations. SeeC runs on each of
Linux, macOS, and Windows.

II. THE DESIGN OF SEEC
The SeeC project provides a novice-focused system for

the standard C programming language supporting execution
tracing and runtime error detection. SeeC itself is built upon
the Clang and LLVM projects [8]. This provides SeeC with
robust support for the C programming language while avoid-
ing the unsustainable maintenance requirements inflicted by
bespoke implementations of parsing, compiling, or interpret-
ing. For a detailed explanation of the SeeC system, see the
discussion in [4, 6, 3].

SeeC uses a modified version of the Clang front-end to per-
form compile-time instrumentation of students’ programs.
The produced executables contain additional code that both
checks for runtime errors and creates a trace of the execu-
tion. The trace can be used to recreate the visible state of
the program at any point of time in the recorded execution.

Clang’s parsing and semantic analysis libraries are used
to create an Abstract Syntax Tree (AST) from a program’s
source code. Each node in the AST represents a declaration
or statement in the program and provides rich semantic in-
formation – the same information that is used during com-
pilation. When an execution trace is loaded the program’s



AST is reconstructed, allowing us to link runtime states to
relevant AST nodes. This provides a mapping between the
program’s static source code and its dynamic state.

III. USING SEEC IN TEACHING
SeeC has been used in our second year undergraduate unit

CITS200 Systems Programming, recently presented to 280-
320 students. After recent changes in our university’s degree
structures, the unit resulted after a merging of a first year
introductory C programming unit and a second year operat-
ing systems unit. The unit provides an introduction to the C
programming language operating system fundamentals (op-
erating system structure, processes, memory management,
and file-systems), and the use of C as a vehicle to access and
control operating system services.

The unit is core for students taking Software Engineering,
Computer Science, or Data Science majors. Most students
have completed at least one of the core units introducing the
Java or Python programming languages. Another quarter of
the unit’s cohort are specialising in Electronic Engineering,
and are undertaking Systems Programming as prior study
for a later units. Unfortunately, Systems Programming is
usually their first programming focused unit in their degree.

We have employed SeeC in recorded lectures to introduce
general programming concepts, such as loops, function calls,
and simple data structures, and the more challenging as-
pects of C, such as its use of pointers and dynamic memory
allocation. Students have commented on ease of use, as a
“drop-in” replacement for their system-provided compiler,
and SeeC’s clarity of error reporting, particularly its ability
to describe runtime errors in English, with reference to their
source code.

IV. OPPORTUNITIES
Through the dramatic growth in our class sizes, and the

increased interest in our teaching of C to students not plan-
ning to graduate in Computer Science, we are currently re-
focusing the design and use of SeeC. Historically, while SeeC
was still under continued development, it was only installed
on our department’s laboratory computers, and was mostly
used by students in their closed laboratory sessions. Over
time, we have made SeeC available to our students to in-
stall on their own laptop or home computers, but this has
proved a challenge for many students because it required the
(well documented) installation of several software packages,
including modified versions of the Clang+LLVM compiler
system. These difficulties have been noted in [7].

SeeC’s traces provide an excellent opportunity for commu-
nication between students, teaching assistants, and educa-
tors. Students can communicate their questions about their
programs with other student and educators, either by iden-
tifying specific line numbers, functions, or points-in-time of
the execution of their programs. Educators can similarly
provide examples and debugging challenges to students. In
addition, the format provides the opportunity for students
and educators to add colourful “popup notes” or even au-
dio samples (including questions and misunderstandings) to
program traces.

However, another remaining challenge is the size of SeeC’s
trace files, which easily grow to hundreds of megabytes for
typical in-laboratory exercises and projects. This size makes
it difficult for students to (quickly) store their program traces

to portable USB drives, and to communicate them via email.
We are currently developing a cloud-based version of SeeC

which will address these current challenges. Cloud-based
storage has rapidly dropped in price, and holding the pro-
gram traces for even several hundred students has become a
reality. Students will be able to communicate within groups,
to enqueue their (synchronous or asynchronous) questions
for teaching assistants, and to undertake longer dialogs about
a single programming problem. Moreover, retaining stu-
dents’ program traces (with permission), provides a rich
opportunity to investigate how students are actually ap-
proching the development and debugging of their programs.

V. REFERENCES
[1] P. Brusilovsky. Program visualization as a debugging

tool for novices. In INTERACT ’93 and CHI ’93
conference companion on Human factors in computing
systems, CHI ’93, pages 29–30, New York, NY, USA,
1993. ACM.

[2] J. H. Cross, II, T. D. Hendrix, D. A. Umphress, L. A.
Barowski, J. Jain, and L. N. Montgomery. Robust
generation of dynamic data structure visualizations
with multiple interaction approaches. Trans. Comput.
Educ., 9:13:1–13:32, June 2009.

[3] M. H. Egan and C. McDonald. Runtime error checking
for novice c programmers. In 4th Annual International
Conference on Computer Science Education:
Innovation and Technology (CSEIT’13), pages 1–9,
2013.

[4] M. H. Egan and C. McDonald. Program visualization
and explanation for novice c programmers. In
Proceedings of the Sixteenth Australasian Computing
Education Conference - Volume 148, ACE ’14, pages
51–57, Darlinghurst, Australia, Australia, 2014.
Australian Computer Society, Inc.

[5] P. J. Guo. Online python tutor: Embeddable web-based
program visualization for cs education. In Proceeding of
the 44th ACM Technical Symposium on Computer
Science Education, SIGCSE ’13, pages 579–584, New
York, NY, USA, 2013. ACM.

[6] M. Heinsen Egan and C. McDonald. Reducing novice c
programmers’ frustration through improved runtime
error checking. In Proceedings of the 18th ACM
Conference on Innovation and Technology in Computer
Science Education, ITiCSE ’13, pages 322–322, New
York, NY, USA, 2013. ACM.

[7] R. Ishizue, K. Sakamoto, H. Washizaki, and
Y. Fukazawa. Pvc: Visualizing c programs on web
browsers for novices. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education,
SIGCSE ’18, pages 245–250, New York, NY, USA,
2018. ACM.

[8] C. Lattner and V. Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. In Proc. of the 2004 International
Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

[9] P. A. Smith and G. I. Webb. Transparency Debugging
with Explanations for Novice Programmers. In
M. Ducassé, editor, Proceedings of the 2nd
International Workshop on Automated and Algorithmic
Debugging, 1995.


