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ABSTRACT
In this article, we describe PrairieLearn, a flexible open-source
platform for asking questions to students that is in broad use
for both homework and exams. We demonstrate PrairieLearn’s
flexibility and ability to integrate existing code and questions
into a single platform using three case studies: Parson’s prob-
lems, designing finite-state machines, and auto-grading “Ex-
plain in plain English” questions. We highlight aspects of
PrairieLearn’s structure that enable this flexibility, in particu-
lar PrairieLearn’s ability to execute arbitrary code both during
the generation of a question instance and during grading stu-
dent answers.

CCS Concepts
•Software and its engineering → Software organization
and properties; •Social and professional topics → Student
assessment;

Author Keywords
assessment, software architecture, flexible, extensible

INTRODUCTION
In the past two decades, we’ve seen significant growth in the
number and usage of web-based platforms for asking questions
related to course content. In addition to traditional Learning
Management Systems (LMS, e.g., Canvas, Moodle), there
have been publisher solutions that provide content associated
with textbooks (e.g., WileyPlus, Connect), start-ups focused on
providing domain-specific commercial platforms (e.g., Codio,
Vocareum), as well as a wide range of solutions that instructors
have built for themselves. Because they can potentially be used
for both homework and exams, we refer to these as question-
asking platforms (QAPs).
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Figure 1. The current question-asking platform (QAP) landscape largely
presents two options to instructors: (a) QAPs that enable easy authoring
of a relatively small number of question types, or (b) the freedom to im-
plement questions however they want by writing a new platform from
scratch. This paper focuses on a software architecture designed to (c)
provide significant flexibility while retaining the ability to easily imple-
ment common question features.

In most STEM classes, a large amount of content is objectively
gradeable, enabling QAPs to perform auto-grading. Auto-
grading provides the pedagogical benefit of immediate feed-
back to students, while simultaneously reducing the workload
of instructors. Using auto-grading—where it is warranted—
enables instructors and other course staff to focus their efforts
on higher value tasks, like tutoring and grading subjective
content (e.g., coding style).

For all that QAPs offer, we find that the current QAP landscape
presents a practical tension between the ease of authoring ques-
tions and the flexibility in the kinds of questions that can be
asked and auto-graded. Figure 1 illustrates this trade-off. Most
commercial platforms provide rather constrained authoring
interfaces that make it easy to write just a few specific kinds
of questions [13] (e.g., multiple-choice questions, which re-
quire only a prompt, a correct answer, and a set of distractors),
represented by Figure 1(a). Some instructors and researchers
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Figure 2. Examples showing flexibility of PrairieLearn, described in more detail in the text: (a) Code writing using external autograder, (b) randomly
parameterized graph, (c) label the datapath value for a randomly generated instruction, (d) Parson’s problem, (e) an FSM drawing mini-CAD tool, (f)
autograded Explain-in-plain-English question using NLP.

unsatisfied with these commercial offerings build their own
specialized tools, represented by Figure 1(b). While inter-
operability standards like LTI [16] and SCORM [31, 4] are
useful for integrating a collection of specialized tools into a
single interface, they don’t decrease the effort of implementing
specialized tools.

This paper describes PrairieLearn [39, 38], an open-source
question asking platform that provides both flexibility to author
novel question types (approaching what could be obtained
from a custom platform) and ease to author common question
types (approaching what could be obtained from a commercial
QAP). PrairieLearn is actively being used by the instructors of
over 100 courses across multiple universities in a broad range
of subjects (e.g., CS, Mechanical Eng., Chemistry, Statistics,
Nutrition) and typically grades over 100,000 student answers
daily. In addition, PrairieLearn has been used in a number of
research studies [1, 2, 3, 5, 7, 9, 10, 8, 6, 12, 14, 23, 24, 27,
30, 32, 33, 28, 34, 35] and was a critical to the development of
the Computer-Based Testing Facility (CBTF) [40, 41, 42, 43].

In Section 2, we attempt to demonstrate PrairieLearn’s flexibil-
ity by showing a range of example questions that it supports.
In Section 3, we highlight the three principles of PrairieLearn’s
design to which we attribute this flexibility, specifically:

1. Use of standard web technologies (Section 3.1)

2. Encapsulation of common functionality as Elements (Sec-
tion 3.2)

3. Support for external auto-graders (Section 3.3)

DEMONSTRATION OF FLEXIBILITY
We include images and descriptions of six problems that ex-
emplify the kind of flexibility that PrairieLearn provides. For
this audience, we’ve chosen to focus on CS-related questions,
but there are similar questions in other domains including 3D-
manipulation of robots, drawing forces to complete free-body
diagrams, and randomly parameterized truss structures. Im-
portantly, none of these question types are directly supported
by the tool; these questions have been implemented on top of
the interfaces that the tool provides.

In addition to multiple-choice questions, one bread-and-butter
type of question is a code writing question (Figure 2(a)).
This kind of question builds on the text editing element (Sec-
tion 3.2) and the external auto-grader (Section 3.3) to allow an
instructor-defined set of tests and scoring rubric to be applied
to the student code.

A QAP is much more useful if it supports the development
of item generators [17], which generate random parameters
in order to create one of a large collection of question in-
stances. Item generators enable re-use of the same question
each semester and mitigate cheating because each student re-
ceives a different version of the question. Figure 2(b) shows
an example of such a generator that renders a random graph
for the student and asks the student to determine a feature of
the graph. Figure 2(c) shows another item generator that asks
students to compute the values on datapath and control wires
of a MIPS processor for a randomly generated instruction.

In the sub-sections that follow, we provide detailed discussion
of three problems that demonstrate PrairieLearn’s capabilities.



Parson’s Problems
Parson’s problems (shown in Figure 2(d)) present students
with a collection of tiles containing lines of code; students
are asked to select and order tiles to complete a program to
accomplish a particular task. Parson’s problems were pro-
posed to provide students an opportunity to practice problem
solving that involved lower cognitive load and focused less on
syntax [29].

The first Parson’s problem implementation in PrairieLearn
was ported from the MIT licensed js-parsons library [18,
15] in one course’s repository. As PrairieLearn uses standard
web technologies—see Section 3.1—the front end portion of
code was largely untouched, with the tile randomization and
grading restructured to fit PrairieLearn’s interfaces.

The code was implemented as a PrairieLearn element (Sec-
tion 3.2). As an element, the Parson’s problem implementa-
tion is separated from the specific text associated with a given
question. After a year’s use in one course, the element was
significantly re-written to provide functionality beyond the
original code; it now support both order-based correctness
checking and running the constructed code against unit tests
using the external autograder (Section 3.3) and released to all
PrairieLearn users as the pl-order-block element.

Auto-grading Finite State Machines
Figure 2(e) shows a question that asks students to design a
finite-state machine (FSM) with certain properties. Its imple-
mentation is similar to the Parson’s problem described in Sec-
tion 2.1 in that its user interface is largely derived from existing
open source code. Specifically, the mini CAD tool for drawing
FSMs is also derived from MIT licensed software [37]. The
interface allows creating new states, associating outputs with
those states (only Moore machines are supported), connecting
states with edges, labelling those edges with predicates, mov-
ing states and edges, and naming states (to help students keep
track of their design).

When saved or graded, a textual representation of the student
design is generated. This textual representation is auto-graded
via simulation by running a collection of test vectors against
the model and comparing the output to a “golden” imple-
mentation. Students are provided feedback by providing an
example test input that failed and the series of outputs on their
implementation and the expected output for that input.

Auto-grading ‘Explain in plain English’ questions
Figure 2(f) shows an implementation of an auto-grading Ex-
plain in plain English (EipE) question, where the student is
shown a piece of code and asked to provide a natural language
description of the code. The code reading skill, which EipE
questions assess and provide practice for, is thought to be an
important developmental skill in learning to program [19, 22,
20, 36, 26, 25]. Lister et al. state that, while their data doesn’t
support the idea of a strict hierarchy, “We found that students
who cannot trace code usually cannot explain code, and also
that students who tend to perform reasonably well at code
writing tasks have also usually acquired the ability to both
trace code and explain code.”[21]

The implementation shown in PrairieLearn supports auto-
grading the natural language descriptions of code that stu-
dents provide using natural language processing (NLP) [11].
While PrairieLearn has no built-in support for NLP, it allows
arbitrary libraries to be used by question code. In this case,
we’re using Python’s natural language toolkit nltk to tok-
enize, unidecode to force students answers to ASCII, and
pyspellchecker to do spelling correction. Then numpy is
used to compute a score from the resulting bag-of-words and
bigrams using a pre-trained model [11]. Because PrairieLearn
allows authoring autograders in Python, our current implemen-
tation is built inside the questions themselves; if we wanted
to use other languages, we could have implemented the auto-
grader using the external autograder support.

FLEXIBILITY/EASE PRINCIPLES

Question Flexibility through an Authoring Interface using
Standard Web Technologies

Many LMS’s provide highly structured authoring environ-
ments, often using a web-based GUI to fill in the content for
an existing question format. While such an authoring envi-
ronment meets its goal of simplicity and prevents bugs by
construction, it also highly constrains the kinds of questions
that can be asked.

In contrast, PrairieLearn enables questions to be authored us-
ing standard web technologies: HTML5 (including client-side
Javascript), server-side Python, JSON for question metadata,
and Docker for external autograders (see Section 3.3). This
minimally constraining authoring interface has three important
implications:

1. It facilitates instructors having all content under one tool.

2. It permits using existing software libraries for question
construction (e.g., the questions shown in Figure 2(d-f)).

3. All content is stored in the git version control system to
allow flexible authoring as source code.

In practice, if you could build a stand-alone web site to ask
your kind of question, you can implement your question using
PrairieLearn. We’ve found this flexibility to be essential in
our effort to move from paper exams to computer-based ex-
ams without dumbing down our courses (e.g., by only using
multiple-choice questions). In fact, PrairieLearn facilitates
novel question development because it provides authors with
standard services (e.g., authentication, storing grades, logging)
which allows authors to focus just on issues salient to the
particular question.

Elements as Reusable Components
There are significant similarities among groups of questions.
For some kinds of questions, the similarity is in the whole
structure of the question (e.g., multiple-choice questions, Par-
son’s problems). In other questions, it is smaller components
(e.g., accepting a numeric value with a particular precision,
displaying a graph). It would be ridiculous to provide an
authoring environment which requires question authors to
replicate the functionality for these common components and
structures.



<el-number-input answers-name=“answer” comparison="sigfig" 
                 digits="2" label="$x =$">
</el-number-input>

<el-multiple-choice answers-name="acc" weight="1">
  <el-answer correct="false">positive</el-answer>
  <el-answer correct="true">negative</el-answer>
  <el-answer correct="false">zero</el-answer>
</el-multiple-choice>
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Figure 3. Other example built-in elements: (a) a real number entry element that checks student’s answers using specified numerical precision algorithm
and (b) a multiple-choice element that handles randomization of answer order and gives feedback. Note that the elements are processed so that the
HTML rendered to students doesn’t indicate the correct answer.

For this reason, PrairieLearn provides the abstraction of ele-
ments, as shown in Figure 3. Elements act like classes/objects
in a programming language, in that they encapsulate common
coherent bits of functionality (and presentation), which can
be instantiated by questions. Importantly, elements are not
question templates. Multiple elements can be composed to
create a single question. In fact, this is very common, with
questions requesting multiple numeric inputs, questions using
elements to render figures and requesting numeric input (e.g.,
Figure 2(b)), or questions using an element to render code to
the student and requesting a string input (e.g., the autograding
EipE question in Figure 2(f)).

External Autograders
While many questions can be auto-graded by elements or by
an optional Python script that can be included in a question,
some questions (e.g., Java programming questions) would be
difficult to auto-grade in those ways. To ensure flexibility,
PrairieLearn provides an external autograder system that al-
lows arbitrary code to be executed in a sandboxed environment
in order to grade a student submission. These questions typ-
ically involve either an in-browser IDE (e.g., Figure 2(a)) or
a file-upload element for questions where students develop
code/produce files locally on their machine.

There are two key ideas to how PrairieLearn implements a
flexible external autograder interface; the first of which is
containers. Containers are a bit like low-overhead virtual ma-
chines that enable question authors to specify exactly what
software is available to the autograder (including which ver-
sions of the software). This configurability has enabled users
to create code writing autograders for a wide variety of lan-
guages, including Java, C++, Python, R, OCaml, Haskell,
MIPS assembly, and Verilog. PrairieLearn uses Docker to
specify containers.

The second key idea is the notion of a clean interface. This
interface is implemented through passing files in PrairieLearn.
Question authors specify the set of files copied into the con-
tainer; in most implementations, this consists of: 1) the submit-
ted student work, 2) question-specific unit tests, 3) a question-
agnostic (but language-specific) testing framework, including
a script that manages the grading, and 4) the data dictio-
nary generated by the question. PrairieLearn expects the con-
tainer to produce a JSON file in a certain format that indicates
whether grading was successful, any overall feedback, and a
collection of rubric elements, each including the points earned
and points available from that rubric item along with specific
feedback on that rubric item (e.g., error from the failing test
case).

The PrairieLearn server supports high throughput and low
latency for this service by maintaining a pool of virtual proces-
sors, which PrairieLearn scales based on demand. At currently
levels of usage it has sustained 20 problems/second with max-
imum time-to-grade below 5 seconds. Its overall median time
to launch a grader (student submission click to grading code
running inside a newly-launched container) is 1.2 seconds.

CONCLUSION
As we shift more and more learning and assessment to digital
systems there is a need for platforms that permit the integra-
tion of a broad range of questions and activities. Perhaps
more importantly, we need platforms that reduce the effort
of building questions and activities by managing all of the
details unrelated to the particular questions being authored,
without needlessly limiting the kinds of questions that can
be written. We believe that PrairieLearn effectively walks
this tightrope, by 1) allowing questions to be authored using
standard web technologies, 2) encapsulating common func-
tionality as elements that can be used to implement questions,
and 3) by supporting external auto-graders so that arbitrary
environments, languages, and libraries can be used to grade
student work.

PrairieLearn is an open-source platform with an active user
community that spans a broad range of universities. We would
love to have you join our community.
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