Integrating a Colony of Code Critiquers into WebTA

Leo C. Ureel I
ureel@mtu.edu
Michigan Technological University
Houghton, MI, USA

ABSTRACT

WebTA is an LTI-based Code Critiquer; a system that accepts stu-
dent code submissions and provides computing students with im-
mediate feedback on their program design. Previously, WebTA was
used to critique Java programs in the introductory CS courses. Our
goal is to extend WebTA to include a colony of code critics so that
we can use WebTA in our Engineering Fundamentals courses that
teach programming in MATLAB and later add code critics to sup-
port a diverse range of computing and non-computing students in
courses that utilize programming in a variety of languages.

CCS CONCEPTS

« Social and professional topics — Computer science edu-
cation; CS1; « Applied computing — Computer-assisted in-
struction; - Software and its engineering — Patterns; Object
oriented languages.

KEYWORDS

CS1, design patterns, autograder, critiquing systems

ACM Reference Format:

Leo C. Ureel II. 2021. Integrating a Colony of Code Critiquers into WebTA.
In Proceedings of Seventh SPLICE Workshop at SIGCSE 2021 “CS Education
Infrastructure for All IlI: From Ideas to Practice” (SPLICE °21). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Computing is playing an increasingly important role in all academic
disciplines. Recent years have seen the creation of many computing-
centric degrees, such as Bio-Informatics, Digital Humanities, and
Human-Centered Computing. Simultaneously, many students in
non-computing majors must take programming courses to develop
the required computational background for their field.

This has motivated us to extend WebTA, our LTI-based Code
Critiquer, to provide feedback and guidance to students learning
to program in other disciplines using languages other than Java.
For instance, the MATLAB language for numerical computing is
commonly used to introduce engineering students to programming.
We have developed a prototype MATLAB Code Critic that can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Seventh SPLICE Workshop at SIGCSE 2021 “CS Education Infrastructure for All III: From
Ideas to Practice”, SPLICE °21, March 15-16, 2021, Virtual Event

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/10.1145/1122445.1122456

public interface Reverselnterface {
public String reverse(String s)i
}

// Implements ReverseInterface
public class Reverse {
// Method required by ReverseInterface
public String reverse(s)
if (s.isEmpty()) return s;
return reverse(s.substr(l)) + s.charAt(

} The assignment required you to implement the
Reverselnterface interface. However, your class Reverse is
not declared to implement the interface with the
implements clause. This is important if your code is to work
with other classes that expect your class to use the
interface. Without it, your code will not compile into a larger
system.

Figure 1: Example of a code critique.

critique homework submissions and provide just-in-time feedback
while students are engaged in development.

This paper describes our experience integrating the MATLAB
Critic with WebTA. The result is an LTI-based critiquer system con-
taining a colony of language-specific Code Critics that we plug into
the Canvas Learning Management System (LMS) to assist students
in introductory courses featuring programming assignments.

2 CRITIQUER SYSTEMS

In the classroom instructors will, based on experience, identify
patterns in student code and call them out. Instructor feedback is
quite different from what a compiler would tell a student.

A Critiquer System analyzes student programs and responds
highly interactive and targeted feedback.[1-3, 5, 9] While approaches
vary, these systems tend to make strong use of the instructor’s do-
main knowledge to identify design issues and formulate meaningful
responses. This makes them well-suited for providing novices with
the kinds of feedback that an instructor might give in a classroom
setting. For example, in Figure 1, the students code will compile
and may execute without error. However, the instructor can config-
ure the Java Critic to identify when the student has implemented
code directly instead of using inheritance. The Java Critic can then
provide the student with advice to improve their solution.

3 WEBTA

WebTA is an LTI-based tool that critiques novice code in conjunc-
tion with the Canvas LMS. [6-8] WebTA facilitates learning through
automatic critique of student source code while the student is en-
gaged in the develop cycle. Students submit code via a Canvas
assignment. Their code is stored in a database and passed in se-
quence to a code critiquer for compilation, testing, and analysis.
The critiquer, highlights problems in the student code and provides
suggestions for improvement.

When analyzing student code, WebTA looks for Novice Antipat-
terns. Novice antipatterns are recurring code snippets that novices
use to solve problems, however the these antipatterns result in
errors and bugs. Novice antipatterns represent the kinds of mis-
takes that experts do not make. Consequently, professional tools

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

SPLICE °21, March 15-16, 2021, Virtual Event

often do not provide good feedback on these kinds of mistakes.
An example of a common antipattern in CS1 courses is the Empty
Loop Antipattern. After learning looping constructs, a student will
sometimes introduce an empty loop to their code simply because
"we just covered loops so they must be important!" A code critic
can identify the empty loop and suggest to the student that it might
not be needed as it contributes nothing to their solution.

3.1 Corpus of Student Submissions

Continued use of WebTA has enabled us to gather a large corpus
of student submissions from our CS1 and CS2 courses. We started
collecting data in 2014. Since that time, the system has been used
by 1,421 students in 27 courses. These students made 64,964 sub-
missions to 119 assignments.

3.1.1 Submission Database. When the student connects through
the Learning Management System (LMS) via LTI to the code critic,
a unique LTI Session ID is generated that serves as a key for their
submission. This and other session data are stored in a LtiSession
table in the database. Student userid, email, and name are stored
in a Person table. Course and Assignment identifiers are stored
in Assignment. Configuration data such as total points, critiquer
processes to run (i.e. compile, test, slice, trace, check style), and tar-
get language are stored in Config. The following summary details
important fields in the submission tables.

o Table: SUBMISSION - contains information about submitted
code files, who submitted them, timestamp, and if the sub-
mission has been processed.

e Table: PROCESS - keyed to a SUBMISSION, this table contains
the results of running a critique process (i,e, compiling, test-
ing, style check, etc.) on a submission.

e Table: Critique - contains generated critiques keyed to a
PROCESS. A critique contains the feedback text and the asso-
ciated line and column range in the code. Entries also contain
links to antecedent data indicating how they were triggered
and why (compilation error, runtime error, test failure, style
violation, antipattern, etc.)

We are currently analyzing the corpus to identify common an-
tipatterns. Developing an awareness of the misconceptions or bad
practices student can fall into, we hope provide students with feed-
back that is more focused, more appropriate to their level of under-
standing, and less intimidating than what they would encounter in
a more traditional development environment.

4 THE MATLAB CRITIC

A prototype MATLAB Critic, being developed at Michigan Techno-
logical University, analyzes a student’s code providing error and
style guidance and feedback. [10]

Similar to the original Java Critic in WebTA, MATLAB Critic
compiles, tests, and analyzes code looking for antipatterns. The
critic uses the MATLAB Java API; connecting to the MATLAB
Engine that parses and executes student code submissions. [4]
When an antipattern is detected, the critic generates a critique for
the student. The critique covers code structure, shakedown test
results, and programming style in a manner appropriate for novice
coders.

Ureel II.

>
" [Canvas LMS

Login
Student
Authenticalion4r

HTTP File & GradasJL
Transfer 3

WebTA LTI q
Student Grails-based Web Site Module

Code I T I
— —+— — +

Database | Antipattern Student Instructor | Critique Grade
Layer | Definitions | Submissions | Tests Results ' Reports
| I] 4 B

v v v 1 1

Crliquer Java MATLAB ‘ | Future |
olony Critic Criic |~ Critic...

Figure 2: Integrated WebTA Critiquer System with Critic
Colony Architecture

5 INTEGRATION WITH WEBTA

WebTA was initially implemented as a single application using a
layered architecture comprised of an LTI module for interfacing
with canvas, a Grails-based Website front-end, a Java Critiquer
layer consisting of a compiler, test stand, and style analyzer, and
finally a database.

The decision was made to split the WebTA architecture into
a federated architecture with the Grails-based Web Site and LTI
Module comprising a front-end that handles all communication
with the student through the Canvas LMS (See Figure 2.) The Java
Critic module was extracted into its own application. Inter-module
communication issues were resolved through the database. A field
was added to the assignment table allowing the instructor to specify
the critiquer to be applied to submissions.

Once the new architecture was tested with the Java Critic, the
MATLAB Critic was added. The prototype MATLAB Critic was
initially developed as a standalone application controlled by com-
mand line arguments and utilizing flat-files instead of a database.
The biggest challenge in this migration was restructuring the code
to work with the established WebTA database.

6 ONGOING DEVELOPMENT

We are currently working with Engineering instructors to develop
MATLAB assignments that use WebTA with the MATLAB Critiquer.
We plan to test the new system in the classroom in a single section
of Engineering Fundamentals in Fall Semester 2021 with a full roll-
out in Spring 2022. We will report more details as we complete the
testing phase of the project.

7 FUTURE WORK

Our goal is to extend the critic colony to several languages used
in courses across campus. Our immediate plan is to create a proto-
type Python Critic for our Introduction to Computing Principles
course for non-CS majors. Another goal is to extend our current
corpus of Java assignment submissions with MATLAB and Python
submissions, then to analyze the corpus to identify cross-language
antipatterns. In the classroom, we plan to look more longitudinally
on the effects of critiquer-based supports. Moreover, we wish to
move our exploratory project into a broader sphere,involving other
institutions.

Integrating a Colony of Code Critiquers into WebTA

ACKNOWLEDGMENTS

This work builds on M.S. thesis work by Marissa Walther at Michi-
gan Technological University. [11]

This research has been supported by a Jackson Blended Learning
Grant, NSF IUSE Grant, and an ICC Seed Grant.

REFERENCES

[1] Norhayati Mohd Ali, John Hosking, and John Grundy. 2013. A taxonomy and

[2

3

]

=

mapping of computer-based critiquing tools. IEEE Transactions on Software
Engineering 39, 11 (2013), 1494-1520.

Stephen H. Edwards and Manuel A. Perez-Quinones. 2008. Web-CAT: Auto-
matically grading programming assignments. Proceedings of the 13th annual
conference on Innovation and technology in computer science education - ITiCSE
°08 (2008).

Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander Chatzigeorgiou.
2011. JDeodorant: Identification and Application of Extract Class Refactorings.
Proceeding of the 33rd international conference on Software engineering - ICSE "11
(2011).

[10

[11

SPLICE °21, March 15-16, 2021, Virtual Event

Inc. Mathworks. [n.d.]. MATLAB.
matlab.html

Lin Qiu and Christopher Riesbeck. 2008. An incremental model for developing
educational critiquing systems: experiences with the Java Critiquer. Journal of
Interactive Learning Research 19, 1 (2008), 119-145.

Leo C Ureel II. 2020. Critiquing Antipatterns In Novice Code. Ph.D. Dissertation.
Michigan Technological University, Houghton, MI.

Leo C Ureel I and Charles Wallace. 2019. Automated Critique of Early Pro-
gramming Antipatterns. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. ACM, 738-744.

Leo C Ureel I and Charles R Wallace. 2018. WebTA: Online Code Critique and
Assignment Feedback. In Proceedings of the 49th ACM Technical Symposium on
Computer Science Education. ACM, 1111-1111.

Arto Vihavainen, Matti Luukkainen, and Martin Pértel. 2013. Test my code:
An automatic assessment service for the extreme apprenticeship method. In
2nd International Workshop on Evidence-based Technology Enhanced Learning.
Springer, 109-116.

Marissa Walther, Leo Ureel, II, and Charles Wallace. 2019. A Prototype MATLAB
Code Critiquer. In Proceedings of the 2019 ACM Conference on innovation and
technology in computer science education (ITiCSE '19). ACM, 325-325.

Marissa L. Walther. 2020. MatlabTA : A Style Critiquer For Novice Engineering
Students.

https://www.mathworks.com/products/

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html

	Abstract
	1 Introduction
	2 Critiquer Systems
	3 WebTA
	3.1 Corpus of Student Submissions

	4 The MATLAB Critic
	5 Integration with WebTA
	6 Ongoing Development
	7 Future Work
	Acknowledgments
	References

