
New Acos Content Types
Ari Korhonen

Aalto University
Espoo, Finland

ari.korhonen@aalto.fi

Giacomo Mariani
Aalto University
Espoo, Finland

giacomo.mariani@aalto.fi

Peter Sormunen
Aalto University
Espoo, Finland

peter.sormunen@aalto.fi

Jan-Mikael Rybicki
Aalto University
Espoo, Finland

jan-mikael.rybicki@aalto.fi

Aleksi Lukkarinen
Aalto University
Espoo, Finland

aleksi.lukkarinen@aalto.fi

Lassi Haaranen
Aalto University
Espoo, Finland

lassi.haaranen@aalto.fi

Artturi Tilanterä
Aalto University
Espoo, Finland

artturi.tilantera@aalto.fi

Juha Sorva
Aalto University
Espoo, Finland

juha.sorva@aalto.fi

ABSTRACT
This paper demonstrates three new content packages recently
published for Acos, the server for sharing smart learning con-
tent. The packages are aimed at 1) code annotation, 2) auto-
matically assessed tracing exercises, and 3) scripted stepwise
animations for stepping through explanations of various con-
tent. The content can be disseminated to different learning
management systems by utilising several learning protocols,
such as LTI.

Author Keywords
online learning, visualizations, automatic feedback,
assessment, code annotations, visual algorithm simulation,
algorithm animation, tracing exercises, stepwise animations

CCS Concepts
•Social and professional topics → Computing education;
•Human-centered computing→ Visualization toolkits;

INTRODUCTION
Acos is a server for integrating Online Learning Activities
(OLA) and interactive content to various learning management
systems (LMS), first published in 2017 [12] and available in
Github1. It provides interfaces for LMSs in various learning
protocols, such as LTI [3] and local learning protocols, allow-
ing content developers to integrate their OLAs to Acos and
1https://github.com/acos-server/acos-server

Seventh SPLICE Workshop at SIGCSE 2021 “CS Education Infrastructure
for All III: From Ideas to Practice”, SPLICE’21, March 15-16, 2021, Virtual
Event

then distribute the contents in different LMSs. An overview of
how exercises are embedded into an LMS is shown in Figure 1.

Browser

LMS
protocol content

type
content
package

Acos

The requested URL uniquely identifies
the protocol, content type, content package,
and the specific exercise

Content package and type can
add/edit the event information

Finally, the protocol
can add further data
and send the results

back to the LMS

Learner submits the exercise.
sendEvent('grade') is called1

2

3

4

5

LMS can show feedback
and exercise points

to the learner

Figure 1. Flow of data in Acos exercise submission.

Originally, the content within Acos was focused on computing
education, for example, providing interactive Parsons prob-
lems2 and JSVEE program visualizations [11]. Since then,
the scope of content developed for Acos has broadened to
teaching academic English, which also benefits from similar
pedagogical solutions as does computing education.

We have recently developed and published three content pack-
ages for Acos that could be of interest to the broader commu-
nity. In this paper, we present 1) Acos code annotation, and
complementary tool to create them, 2) Integration of Visual
Algorithm Simulation Exercises to Acos ecosystem, and 3)
scripted stepwise animations for stepping through explanations
of various content.

CODE ANNOTATIONS IN ACOS
Acos code annotation is a content package designed for adding
explanations to plain text and program code excerpts (other
2https://github.com/acos-server/acos-jsparsons-python

https://github.com/acos-server/acos-server
https://github.com/acos-server/acos-jsparsons-python

Figure 3. Creating the annotations in the provided tool.

similar tools exist as well, e.g. [2]). Traditionally, code
samples in textbooks are explained separately in the main text,
which can increase the cognitive load of the learner due to
split attention [1]. Of course, the code excerpts themselves can
include comments, which are indicated using various symbols,
such as #, // or %. These traditional forms of explaining code
features are inherently static, lacking dynamic interaction with
the learning materials.

With Acos code annotations, the instructor can create anno-
tated examples that highlight particular segments in the text
when learners hover their mouse over the explanations. Fig-
ure 2 illustrates an annotated code example. This approach
allows learner to locate the essential features in the code more
easily than in the traditional textbook format, while keeping
track with the location of explanations. This should reduce the
risk of split attention and maintain learner control [10], mak-
ing the code or text analysis a more dynamic and interactive
experience for the learner.

Pedagogically, the Acos code annotations package is suitable
for introducing concepts in similar fashion than a textbook,
web page or video, but it promotes more possibilities for en-
gagement and interaction for the learner. The interface can be
embedded in an existing LMS and does not require installing
any additional software or plugins, provided that the Acos
server is already available.

Figure 2 illustrates a case in which a learner hovers the mouse
over the second annotation (green text box) from the top. Here
the annotation highlights one segment of HTML code in red.
In addition, it is possible to highlight many separate segments
within one annotation, such as the href and rel, to illustrate
how separate features are related within an example text.

Figure 2. An example of code annotation with one annotation high-
lighted.

The code annotations are stored in a JSON file and then served
by the Acos server. Since editing JSON files manually can
be an error prone and tedious process, a teacher tool was
developed for creating code annotations activities (see Figure
3). The teacher tool generates the exercise contents both in
JSON and RST formats. The tool renders the annotations in
real time, requiring no separate compiler. Each annotation can
be linked to one or more segments in the text. The annotations
(i.e., explanations) can include HTML tags, such as those for
adding typographical emphasis or URLs to other resources
online.

Since Acos code annotation can be used for annotating plain
text documents, this tools has also been used in academic
writing courses to annotate texts in natural languages. In these
scenarios, code highlighting can be turned off. Currently,
Acos code highlighting is available for Python, HTML, CSS,
JavaScript, and C.

Acos code annotation also stores log data on the Acos server in
the JSON format, such as when the users hover their mouse on
the annotations or move the mouse off the annotations. This
log data could be used for learning analytics or educational
data mining (EDM) to further understand learner behavior or
support learners in their learning process.

We plan on publishing npm packages later on. For the time
being, the content is available at GitHub:

• Content type:
https://github.com/sormpe/acos-code-annotation

• Sample content for annotations:
https://github.com/sormpe/acos-code-annotation-sample

• Tool for instructors to create annotations:
https://github.com/sormpe/acos-annotation-tool

The sample annotations and the annotation tool are demon-
strated at https://acos.cs.aalto.fi/:

• Sample content, e.g.:
https://acos.cs.aalto.fi/html/codeannotation/

code-annotation-sample/hello_world_python

• Annotation tool:
https://acos.cs.aalto.fi/code-annotation-tool/

https://github.com/sormpe/acos-code-annotation
https://github.com/sormpe/acos-code-annotation-sample
https://github.com/sormpe/acos-annotation-tool
https://acos.cs.aalto.fi/
https://acos.cs.aalto.fi/html/codeannotation/code-annotation-sample/hello_world_python
https://acos.cs.aalto.fi/html/codeannotation/code-annotation-sample/hello_world_python
https://acos.cs.aalto.fi/code-annotation-tool/

VISUAL ALGORITHM SIMULATION EXERCISES
Visual Algorithm Simulation [6] (VAS) exercises build on the
concept of Algorithm Animation (AA). An AA visualises an
algorithm in action by displaying the data structures involved,
their states and the operations performed. The visualisation is
typically a step-by-step sequence, which also offers the possi-
bility to step back and forth along the animation series [6, 7].
Compared to AAs, VAS exercises further engage the learner
by requiring an active role in setting the sequence steps. Ac-
cording to the Engagement Taxonomy [9], the learner operates
in a higher level of engagement than purely watching an ani-
mation. In a typical VAS exercise, the learner manipulates the
state of the data structures through a graphical user interface
and simulates step-by-step the actions of an algorithm. This
can happen in different levels of abstraction. By means of
this activity, learners trace the algorithm, and based on the
immediate automatic feedback, learners can verify that they
correctly understood the behavior of the algorithm, or they
can retry if they failed to do so. Typically, all students retry an
exercise until they reach a correct solution. In each trial, the
input for the algorithm is different; thus, the system can also
reveal the model solution between trials. Due to the varying
input, the correct trace is also different in each trial. Figure 4
displays a VAS exercise where the learner is asked to simu-
late the Build-Heap algorithm by interacting with either the
implementation-level binary heap array or logical-level binary
tree: clicking two elements with the mouse swaps them.

Figure 4. A VAS exercise on a linear-time Build-Heap algorithm from
the OpenDSA e-textbook. The learner is expected to swap keys either in
the array or in the tree to constitute a min heap.

The content type package acos-jsav3 adds support for content
created with the JavaScript Algorithm Visualization library [4]
(JSAV), while the content package acos-jsav-vas4 adds sup-
port for serving JSAV VAS exercises from an Acos server.
Similar to other content hosted on an Acos server, instruc-
tors can visualize and test VAS exercises through the server
homepage5, and copy the URL to import the exercise into an
LMS [12]. Running an exercise within an LMS may require
allowing third-party cookies on the client browser. Developers
3https://www.npmjs.com/package/acos-jsav
4https://www.npmjs.com/package/acos-jsav-vas
5http://acos.cs.aalto.fi/html/jsav/jsav-vas/insertion_
sort
wishing to add existing JSAV VAS exercises into the Acos

server need to install the above type and content packages
and follow the instructions given in the respective documen-
tation. Guidance on how to create VAS exercises with the
JSAV library is available at http://www.jsav.io. Potentially,
the OpenDSA e-textbook6 [5] offers an extensive collection of
JSAV-based VAS exercises which could be served from Acos,
thus enabling their use in various LMSs.

We plan to continue developing VAS exercises and tools by

• broadening the exercise offering,

• developing further an existing prototype [8] for recording
the trace produced by a learner and saving it to the LMS,
and

• developing further the existing prototype player [8] to re-
produce an algorithm animation from a saved trace.

SCRIPTED STEPWISE ANIMATIONS
Animated diagrams are useful for illustrating a variety of top-
ics. To support their creation in Acos, we have created a
general-purpose visualization framework that enables teach-
ers to script animations as a sequence of steps. Each step
corresponds to a distinct picture that is shown to learners.

The framework is generic in the sense that it is not customized
to any particular application area, such as algorithms or a spe-
cific kind of an algorithm. Instead, the teacher is free to com-
pose pictures from any images, text, and other static resources;
thus, the visualizations may be useful for a broad range of
purposes. However, as we initially created the framework for
visualizing communication between clients and servers, it is, at
least for now, dubbed CSMV, which is short for Client-Server
Messaging Visualizer.

Student Interface. Figure 5 shows an example of a student
interface of the CSMV: The animation area displays a step
of an animation about asynchronous requests. Students can
use the control buttons below to move linearly back and forth
through the steps. Another example of an animation step is
shown in Figure 6.

Figure 5. A step within a CSMV animation that illustrates making asyn-
chronous requests in JavaScript. The green arrow has been loaded as an
image; the other visual elements were constructed in the configuration
file for the animation.

Teacher Interface. To create an animation, the teacher plans
the content, creates or acquires the appropriate static resources
6https://opendsa-server.cs.vt.edu/

https://www.npmjs.com/package/acos-jsav
https://www.npmjs.com/package/acos-jsav-vas
http://acos.cs.aalto.fi/html/jsav/jsav-vas/insertion_sort
http://acos.cs.aalto.fi/html/jsav/jsav-vas/insertion_sort
http://www.jsav.io
https://opendsa-server.cs.vt.edu/

document.CSMesVisSetupData = [
{
name: "",
title: "",
description: "",

debug: {},
// Control size, buttons, etc.:
environment: {},
// Actors in the visualization:
actors: [],
// Instructions for the actors:
steps: [],

},
{ · · · }, // next visualization
...

];

Listing 1. A stub of a CSMV configuration file.

Figure 6. A step within an animation explaining (in Finnish) how to
register an event handler. The animation gradually adds blocks of code
(with a highlighted background) and describes each addition in the red
rectangle at the top.

(such as images), and defines the visualization in a JavaScript
file. Listing 1 displays a stub of such file. In addition to
basic metadata and debugging settings, each animation needs
three types of configurations: (1) environment settings, such
as the animation’s size and the visible buttons; (2) a list of
actors, which are the visual elements that can be used in step
definitions; and (3) a list of step definitions, which describe
how each step is realized using the actors.

Actors can be defined as blocks of plain text, chunks of Hyper-
Text Markup Language (HTML), or with the aid of some
presets, such as the boxes for the Browser and the Server in
Figure 5. Cascading Style Sheets (CSS) can be used to define
the appearance of the actors. At the moment, CSMV offers
three operations for controlling the actors: (1) setting actor’s
position in absolute coordinates, (2) showing an actor, and

(3) hiding an actor. Smooth animation is not supported yet
but can be achieved in a limited form by exploiting animated
image file formats.

At this prototype stage, no dedicated editor exists for creat-
ing CSMV animations. The creation process is manual, but
an available configuration file template is relatively easy to
use for anyone with basic HTML and CSS skills.

Prototype Implementation. CSMV is implemented using
EcmaScript 6 and jQuery. At the moment, the data model
is a state machine based on the list of steps read from the
configuration file. Usage logging is based on events generated
by CSMV and recorded by Acos. The source project lacks a
proper documentation at this time, but it is publicly available7

for use and further development.
7https://github.com/aleksi-lukkarinen/
Client-Server-Messaging-Visualizer

In terms of the two-dimensional engagement taxonomy
(2DET) of Sorva et al. [13], CSMV is currently on the Con-
trolled Viewing level in Direct Engagement and on the Given
Content level in Content Ownership. As CSMV offers pre-
defined content only, its location in the latter dimension is
fixed by design. However, its highest possible level of Di-
rect Engagement can be raised, for instance, by implementing
support for integrating exercises to the visualizations for both
adding interactivity and analyzing learning.

Another possible direction for future development is to gener-
alize the data model to directed graphs. This would make it
possible to realize non-linear scripts, in which the user would
be able to choose—or would be directed to—various paths
during the visualization. Other potential features to be added
include actions for the actors, with variables and conditions;
actor and step templates; actor definitions using Scalable Vec-
tor Graphics; and smooth animation.

REFERENCES
[1] Tamara van Gog. 2014. The Signaling (or Cueing)

Principle in Multimedia Learning. In The Cambridge
Handbook of Multimedia Learning (2 ed.), Richard E.
Mayer (Ed.). Cambridge University Press, Cambridge,
UK, Chapter 11, 263–278. DOI:
http://dx.doi.org/10.1017/CBO9781139547369.014

[2] Roya Hosseini, Kamil Akhuseyinoglu, Andrew Petersen,
Christian D Schunn, and Peter Brusilovsky. 2018.
PCEX: interactive program construction examples for
learning programming. In Proceedings of the 18th Koli
Calling International Conference on Computing
Education Research. 1–9.

[3] IMS Global Learning Consortium. 2021. Learning Tools
Interoperability. (2021). Retrieved Jan. 29, 2021 from
http://www.imsglobal.org/toolsinteroperability2.cfm

[4] Ville Karavirta and Clifford A. Shaffer. 2013. JSAV: The
JavaScript Algorithm Visualization Library. In
Proceedings of the 18th ACM Conference on Innovation
and Technology in Computer Science Education (ITiCSE

’13). Association for Computing Machinery, New York,

https://github.com/aleksi-lukkarinen/Client-Server-Messaging-Visualizer
https://github.com/aleksi-lukkarinen/Client-Server-Messaging-Visualizer
http://dx.doi.org/10.1017/CBO9781139547369.014
http://www.imsglobal.org/toolsinteroperability2.cfm

NY, USA, 159–164. DOI:http://dx.doi.org/https:
//doi.org/10.1145/2462476.2462487

[5] Ville Karavirta and Clifford A. Shaffer. 2016. Creating
Engaging Online Learning Material with the JSAV
JavaScript Algorithm Visualization Library. IEEE
Transactions on Learning Technologies 9, 2 (4 2016),
171–183. DOI:
http://dx.doi.org/10.1109/TLT.2015.2490673

[6] Ari Korhonen. 2003. Visual algorithm simulation. Ph.D.
Dissertation. Helsinki University of Technology, Espoo,
Finland. http://urn.fi/urn:nbn:fi:tkk-001030

[7] Ari Korhonen and Lauri Malmi. 2000. Algorithm
Simulation with Automatic Assessment. SIGCSE Bull.
32, 3 (July 2000), 160–163. DOI:
http://dx.doi.org/10.1145/353519.343157

[8] Giacomo Mariani. 2020. Design of an Application to
Collect Data and Create Animations from Visual
Algorithm Simulation Exercises. Master’s Thesis, Aalto
University, Espoo, Finland. (2020).
http://urn.fi/URN:NBN:fi:aalto-202005313418

[9] Thomas L. Naps, Guido Rößling, Vicki Almstrum,
Wanda Dann, Rudolf Fleischer, Chris Hundhausen, Ari
Korhonen, Lauri Malmi, Myles McNally, Susan Rodger,
and J. Ángel Velázquez-Iturbide. 2002. Exploring the

Role of Visualization and Engagement in Computer
Science Education. SIGCSE Bull. 35, 2 (June 2002),
131–152. DOI:
http://dx.doi.org/10.1145/782941.782998

[10] Katharina Scheiter. 2014. The Learner Control Principle
in Multimedia Learning. In The Cambridge Handbook
of Multimedia Learning (2 ed.), Richard E. Mayer (Ed.).
Cambridge University Press, Cambridge, UK,
Chapter 21, 487–512. DOI:
http://dx.doi.org/10.1017/CBO9781139547369.025

[11] Teemu Sirkiä. 2018. Jsvee & Kelmu: Creating and
tailoring program animations for computing education.
Journal of Software: Evolution and Process 30, 2 (2018),
e1924. DOI:http://dx.doi.org/10.1002/smr.1924

[12] Teemu Sirkiä and Lassi Haaranen. 2017. Improving
online learning activity interoperability with Acos server.
Software: Practice and Experience 47, 11 (2017),
1657–1676. DOI:http://dx.doi.org/10.1002/spe.2492

[13] Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A
Review of Generic Program Visualization Systems for
Introductory Programming Education. ACM
Transactions on Computing Education 13, 4, Article 15
(Nov. 2013), 64 pages. DOI:
http://dx.doi.org/10.1145/2490822

http://dx.doi.org/https://doi.org/10.1145/2462476.2462487
http://dx.doi.org/https://doi.org/10.1145/2462476.2462487
http://dx.doi.org/10.1109/TLT.2015.2490673
http://urn.fi/urn:nbn:fi:tkk-001030
http://dx.doi.org/10.1145/353519.343157
http://urn.fi/URN:NBN:fi:aalto-202005313418
http://dx.doi.org/10.1145/782941.782998
http://dx.doi.org/10.1017/CBO9781139547369.025
http://dx.doi.org/10.1002/smr.1924
http://dx.doi.org/10.1002/spe.2492
http://dx.doi.org/10.1145/2490822

	Introduction
	Code Annotations in Acos
	Visual Algorithm Simulation Exercises
	Scripted Stepwise Animations
	References

