
Microservices for Score and State Saving of Aggregated
Interactive Assignments

Cay Horstmann
San José State University

San José, CA
cay.horstmann@sjsu.edu

ABSTRACT
A set of microservices enables the inclusion of arbitrary inter-
active JavaScript elements in assignments, course/lab notes,
and textbooks. Implementors of the JavaScript elements add
calls to a simple API. The services handle aggregation, state
saving, and the LTI protocol. A current implementation is the
CodeCheck assignment feature that allows the creation of LTI
assignments consisting of autograded coding exercises, code
tracing exercises, and Parsons problems.

Author Keywords
online education, interoperability, smart learning content

CCS Concepts
•Applied computing → E-learning; Learning management
systems;

INTRODUCTION
When writing digital textbooks, it is now possible to include
complex interactive assignments that probe student under-
standing. These include code tracers (prompting for execution
lines or variable contents), Parsons problems, and autograded
coding exercises. Reading systems include Runestone [3],
OpenDSA [7], proprietary systems (Wiley’s zyBooks, Pear-
son’s Revel), as well as EPUB3 readers (VitalSource, Red-
Shelf). One important responsibility of a reading system is to
track student progress and to share it with instructors.

These systems are compelling, but with the exception of
EPUB3, which is an open standard with multiple implementa-
tions, their authoring formats differ greatly from each other. A
prospective author will need to invest time to choose among
them, and then to learn the chosen system’s authoring tools.
On the other hand, as discussed in the following section in
more detail, course delivery based on EPUB3 is in its infancy.

Thus, an instructor who wishes to author interactive lecture
notes, labs, or assignments, which might or might not grow
into a book, is faced with a high barrier to entry.

Seventh SPLICE Workshop at SIGCSE 2021 “CS Education Infrastructure
for All III: From Ideas to Practice”, SPLICE’21, March 15-16, 2021, Virtual
Event

A different barrier exists for authors of interactive exercises.
Such exercises are typically authored in JavaScript, for display
in a browser. Providing a remote storage facility for saving
and restoring student work would be a major distraction for
the exercise author.

In this paper, I report on the design of the CodeCheck As-
signments feature which enables instructors to compose as-
signments from multiple interactive exercise types, provided
they support an extremely simple score and state API which is
proposed in the EPUB for Education draft standard.

EPUB3 AND EPUB FOR EDUCATION
EPUB3 [2] is an open standard for digital book packaging.
Pages are authored in (X)HTML, CSS, and JavaScript. For
offline reading, books are not supposed to contain external
references. In practice, many EPUB3 readers do not block
network connections in JavaScript code, thus enabling tools
for offline code grading, speech analyis, and so on.Tools for
packaging material into EPUB3 from sources in HTML, Mark-
down, or similar, are readily available.

By itself, EPUB3 is not suitable for delivering material in a
course. A reading system needs to provide enhanced services
such as managing student enrollment, collecting scores, and
managing student work state. The EPUB for Education [9]
draft standard attempts to standardize on such services, but its
progress has been slow and uncertain.

One encouraging aspect of the draft standard is the very simple
API that interactive elements use for scores and state. An in-
teractive element can entirely focus on visual appearance, user
interaction, and score evaluation. The reader is responsible
for transmission and storage of scores and state. The reader
provides methods

EPUB.Education.reportScores([scores], callback)
EPUB.Education.getScores([locations], callback)

Each score is an object with properties score (between 0 and
1), location (a unique ID in the document), and metadata
(arbitrary state data that the element saves and retrieves in
order to restore student work). The first call saves and array
of scores, and the second one returns it to the callback.

This API (or technically, its precedessor) is used the in eight
exercise types of the activities in [5] (published by Wiley and
delivered as EPUB3 through VitalSource). Adapting to the
API was straightforward, and it would have been trivial if that
had been part of the original design.



Figure 1. Restoring state in an aggregated assignment

Unfortunately, the EPUB for Education effort seems to have
stalled. There is only one known draft implementation (Vital-
Source). It provides state saving but no satisfactory services
for score reporting or LMS integration.

CODECHECK ASSIGNMENTS
CodeCheck [4] is an autograder that is optimized for rapid
authoring of small assignments. Its users requested LMS
integration, but they wanted to assign problem sets that contain
multiple CodeCheck assignments as well as other assignment
types such as Parsons problems or tracing exercises. They
also demanded state saving as a necessary feature for longer
assignments.

One apparent solution is an LTI wrapper such as ACOS ([8]).
However, typical LMS cannot include LTI exercises as part of
a quiz assignment. (An exception is Moodle that has a plugin
for this purpose [1].) Moreover, saving and restoring state is
not a part of the LTI standard, nor is it otherwise supported by
LMS.

The remedy was to provide two microservices, for state saving
and for aggregating exercises into assignments.

The state service saves and restores the state (that is, arbitrary
JSON) of an exercise ID, given a triple (assignment ID, student
ID, location ID). When used with LTI, the assignment ID is the
toolConsumerID + courseID, and the student ID is the opaque
user ID provided by LTI. A use outside LTI is also supported,
where assignment and student IDs are randomly assigned. (For
FERPA reasons, the service does not use regular student IDs.)
This is a straightforward service, which, to hold cost down,
uses a shared NoSQL database (Amazon DynamoDB).

The aggregation service provides, optionally as an LTI tool
provider, a web page with a tabbed interface. Each exercise
is placed in an iframe, in order to isolate the JavaScript and
CSS dependencies. Each exercise page must import a small
JavaScript shim that implements the EPUB.Education class.
Its methods for state saving and retrieval post messages to the

parent frame, which then uses the previously described state
service

Instructors are thus able to provide assignments consisting of
multiple autograded code exercises, code tracing exercises,
and Parsons puzzles. These exercise forms already supported
the EPUB for Education calls, but it would be easy to add
others.

As a compelling example, the Udacity/CS046 course [6] was
turned into a set of assignments that, when placed inside a
LMS, almost completely replicate the experience inside the
Udacity MOOC environment, except that student progress
data is now available to instructors.

A third service simply provides an LTI wrapper with state
saving over a single exercise that uses the EPUB for Education
API.

RESULTS AND CONCLUSION
Using the provided services, it is straightforward to inte-
grate arbitrary JavaScript-based interactive assignments into
larger assignments or lessons. The JavaScript code must be
augmented to call the EPUB.Education services when the
score changes (for example, on completion). Supporting state
restoration in an existing element can be more complex, but it
is optional.

There is value in separating LTI implementation, aggregation,
and state saving as separate services. Providing these services
requires a very different skill set than a designer of interactive
content typically possesses. It remains to be seen whether de-
signers of existing interactive elements will embrace a simple
service-enabling API such as EPUB for Education.

Finally, we often think of building large systems that provide
holistic solutions. In contrast, the services in this presentation
are focused and tiny by comparison. For instructors, the cost
of entry is extremely low. Perhaps as a consequence, there is a
steady stream of users, both casual and committed.



REFERENCES
[1] 2020. Moodle LTI Question Type. (2020). Retrieved Feb

15, 2021 from https://moodle.org/plugins/qtype_lti
[2] Garth Conbo, Matt Garish, MURATA Makoto, and

Daniel Weck. 2019. EPUB3 Overview. (2019).
Retrieved Feb 15, 2021 from https:
//www.w3.org/publishing/epub3/epub-overview.html/

[3] Barbara J. Ericson and Bradley N. Miller. 2020.
Runestone: A Platform for Free, On-Line, and
Interactive Ebooks. In Proceedings of the 51st ACM
Technical Symposium on Computer Science Education
(SIGCSE ’20). Association for Computing Machinery,
New York, NY, USA, 1012–1018. DOI:
http://dx.doi.org/10.1145/3328778.3366950

[4] Cay Horstmann. 2006. CodeCheck. (2006). Retrieved
Feb 15, 2021 from https://codecheck.io

[5] Cay Horstmann. 2019. Big Java Early Objects (7th. ed.).
Wiley, New York, NY.

[6] Cay Horstmann, Cheng-Han Lee, Sara Tansey, and
Kathleen O’Brien. 2013. Udacity/SJSU CS046 Course.
(2013). Retrieved Feb 15, 2021 from
https://horstmann.com/sjsu/cs046

[7] Clifford A. Shaffer, Ville Karavirta, Ari Korhonen, and
Thomas L. Naps. 2011. OpenDSA: Beginning a
Community Active-EBook Project. In Proceedings of
the 11th Koli Calling International Conference on
Computing Education Research (Koli Calling ’11).
Association for Computing Machinery, New York, NY,
USA, 112–117. DOI:
http://dx.doi.org/10.1145/2094131.2094154

[8] Teemu Sirkiä and Lassi Haaranen. 2015. Acos Server:
Towards Smart Learning Content Interoperability. In
Proceedings of the 15th Koli Calling Conference on
Computing Education Research (Koli Calling ’15).
Association for Computing Machinery, New York, NY,
USA, 169–170. DOI:
http://dx.doi.org/10.1145/2828959.2828981

[9] David Stroup, Markus Gylling, Matt Garish,
Yonah Levenson Hirschman, Tzviya Siegman, John
Tibbetts, Rick Johnson, and Nick Brown. 2019. EPUB3
for Education Draft Report. (2019). Retrieved Feb 15,
2021 from https://w3c.github.io/publ-cg/education/
epub-education.html

https://moodle.org/plugins/qtype_lti
https://www.w3.org/publishing/epub3/epub-overview.html/
https://www.w3.org/publishing/epub3/epub-overview.html/
http://dx.doi.org/10.1145/3328778.3366950
https://codecheck.io
https://horstmann.com/sjsu/cs046
http://dx.doi.org/10.1145/2094131.2094154
http://dx.doi.org/10.1145/2828959.2828981
https://w3c.github.io/publ-cg/education/epub-education.html
https://w3c.github.io/publ-cg/education/epub-education.html

	Introduction
	EPUB3 and EPUB for Education
	CodeCheck Assignments
	Results and Conclusion
	References 

