A Proposed Workflow For Version-Controlled Assignment
Management

Bob Edmison
Virginia Tech Department of
Computer Science
Blacksburg, Virginia, USA
bedmison@vt.edu

Austin Cory Bart
University of Delaware
Department of Computer
Science
Newark, Delaware, USA

Stephen H. Edwards
Virginia Tech Department of
Computer Science
Blacksburg, Virginia, USA
edwards @cs.vt.edus

acbart@udel.edu

ABSTRACT

Computer science instructors spend a significant amount of
time developing software exercises and projects for their
classes. After creating these assignments, sharing them with
their colleagues can be another large effort, even at the same
institution. As part of an effort to scale course offerings, as
well as sharing content, we propose a solution to leverage two
existing technologies, Waltz and PEML, to create a complete
workflow that will allow an instructor to store their program-
ming assignments in a Git code repository, use PEML to define
the exercise, and then use Waltz to create the student-facing
resources in a learning management system (LMS), as well
as the automated creation of program assessments in auto-
graders. We will also discuss future opportunities to extend
this workflow.

Author Keywords
automated grading, programming assignment, interchange,
reuse, SPLICE, PEML

CCS Concepts
*Applied computing — Computer-assisted instruction;
*Social and professional topics — Computing education;

INTRODUCTION

Developing programming assignments is a labor-intensive ac-
tivity, especially so when an instructor is teaching a course for
the first time. Many instructors are willing to share the exer-
cises they create, but the manner in which those assignments
are shared also can be labor-intensive [6].

Attempts have been made to create repositories of program-
ming assignments [12][11] and other work has been done on
how to design a resource sharing site [10]. Indeed, a format
for encoding the metadata that describes programming exer-
cises has been developed (PEML [4]). The missing link is
a pipeline to take materials from a repository, publish them

Seventh SPLICE Workshop at SIGCSE 2021 “CS Education Infrastructure
for All III: From Ideas to Practice”, SPLICE’21, March 15-16, 2021, Virtual
Event

to a student-accessible location, and configure the automated
grading tools that assess the students’ submissions of those
projects (ideally in a automatic way, as in CI/CD). We describe
a potential solution that leverages work done by several of the
CS SPLICE working groups [3][4], incorporating technology
and best practices developed by those groups.

MINIMUM WORKFLOW SUPPORT

As with most things, lowering the barriers to entry makes it
more likely that a tool or process will be more widely adopted.
To do this, we believe that a workflow would need the follow-
ing minimum features:

e Use a standard, machine-readable format to describe the
programming assignment. There are a variety of ways in
which a programming assignment can be described. Many
of the existing tools and assignment repositories leave it
to the contributor to format the metadata that describes
the assignment. This can result in uneven or incomplete
descriptions of the materials. This approach can also hinder
automatic conversion of the materials into other forms,
because of the ad hoc nature of the description.

e [nterface with an LMS to host the student-facing assignment
content. The mechanics of creating the student-facing
artifacts for programming assignments can be tedious.
Some of the metadata for an assignment, such as due dates,
are independent of the specific instance of offering the
assignment. Attempts have been made [13] to develop
workflows to automatically create the student-facing
artifacts deployed separately from an LMS. Because of
the prevalence of LMS tools, as well as the reported
preference of students to have a central location for course
materials [8], interfacing directly with an LMS to cre-
ate the student-facing artifacts is viewed as a critical feature.

e Be able to read project resources from a version control
repository. Using a version control repository to hold
the course materials provides a number of benefits. Such
a repository provides a built-in mechanism for tracking
changes and additions to the assignment collection.
Additionally, sharing is facilitated by allowing access to the
repositories to invited instructors, who can make additions
and modifications to assignments. Finally, versioning



Program Sharing Infrastructure Instructor Course Delivery Infrastructure

-

o~
Autograder -
Tests L Instructor
1 Material

Repository

B

‘ AutoGrader

B ——

Repository \

PEML

Student Shared
Starter Code Program

Course-Specific

Figure 1. Workflow Overview

can be used to identify the edition of the assignments
being offered. The use of Github and Gitlab as homes
for course material repositories is well understood, with
some instructors hosting their entire course in Github, and
then forking an instance to use as the basis for the next
term [13].

o [nterface with a widely-used automated grading platform to
configure the process of assessing the projects. Publishing
programming assignments to students is often only half of
the necessary preparation. Instructors must also configure
their autograder to accept and evaluate student coding sub-
missions. The evaluation scripts or tests should be captured
with the assignment, and the publishing workflow should
be able to push those configurations to the autograder.

TOWARD A COMPLETE WORKFLOW

Our goal is to incorporate all of the features specified in Sec-
tion 2 into a single tool. We propose a solution that leverages
existing tools to create a complete workflow between the code-
repository, LMS, and autograder. As a start, the assignments
will be published in a Gitlab [7] repository hosted by the first
author’s university. This repository uses a federated authenti-
cation system to allow access to contributors from over 500
institutions. Initially, access to the repository will be limited
to the project participants. Eventually, the intent is to grant
access to verified instructors who wish to use the assignments
provided, or contribute their own. In addition to the value
provided by federated authentication, we opted for a locally-
hosted repository because we believed this offers an extra
layer of security to ensure the integrity of the course resources,
while offering all of the features of Git. As this community
grows, we envision a catalog of supported repositories being
available, with indexing based on the tags provided in the the
project metadata.

We will use the Programming Exercise Markup Language
(PEML) [4] to capture instance-independent metadata for the
assignments. Each assignment will have a PEML file that
describes the assignment. We will capture metadata such as
the assignment author, the topics covered in the assignment,
as well as any prerequisite knowledge the author believes
students would need prior to undertaking the assignment. Also,

PEML provides a way to reference supporting resources for
an assignment, such as starter code and test cases, as well as
a reference implementation and tests for use in an autograder.
We have created PEML files for each of the assignments in
the repository. As part of this effort, we will create a publicly-
accessible microservice that will validate and provide a parsed
version of the PEML file. These files will be the primary input
into the workflow tool.

Waltz [1] will be used to manage the workflow process. Waltz
is a command line tool created in Python. It will create the
student-facing assignment resources from the PEML files and
referenced resources, and then publish them to an LMS. Ini-
tially, LMS support will focus on Canvas [9], as this is the LMS
used at the authors’ institutions. Additional LMS support is in-
tended, as we find contributors who use to Blackboard [2] and
D2L [5]. Additionally, Waltz will manage the configuration of
the autograder, based on the configuration files described in
the assignment PEML file.

Finally, this process will automatically provision resources
within supported autograders. Initially, we will support Web-
CAT as the autograding component of this workflow. Support
for additional autograding tools will be added as demand for
those services become clear. By parsing the PEML file, Waltz
will be able to retrieve the reference tests to be used to as-
sess student responses to the programming assignment. The
process will then reach into supported autograders to program-
matically configure of the grading infrastructure. PEML files
can support an arbitrary set of autograding configurations. Our
initial support is focussed on Web-CAT for two reasons: It
has been developed and maintained by one of the co-authors
since inception, and; Web-CAT supports LTI integration into
Canvas, thus we will be able to establish the linkage between
Canvas and Web-CAT to allow submissions from inside the
Canvas Assignment tool and also allow Web-CAT to pass
grades back into the Canvas Gradebook once the assessment is
completed. This provides a complete end-to-end submission
and grading workflow.

FURTHER WORK AND CONCLUSION

As we execute on our vision, we are looking for three major
things from the community. First, we hope for feedback on the
problem and solution we have identified; what limitations and
issues do you foresee? Our goal is for this workflow to be as
flexible as possible, but not unwieldy in its flexibility. Second,
we are interested in suggestions for new features or extensions
to this work that might be of interest to the community. While
we plan to add features such as additional LMS and autograder
support, we would like to know which other tools to support
first. Finally, we are advertising our workflow in the hopes of
finding potential collaborators and adopters, to increase our
impact. We would very much like to identify instructors who
are interested in extending this work, either by contributing to
the development of the tooling, by using the tool and giving us
feedback on what works well, as well as the pain points that
are encountered, and also to help us identify shortcomings in
the tools and processes. We hope to make this a solution that
contributes to reducing the effort needed to share resources, as
well as deploy them for our students.



REFERENCES

(1]

[2

—_—

(3]

(4]

(5]

(6]

(7]

Austin Cory Bart. 2021. Waltz: A Software System for
Synchronizing LMS Course Content.
https://github.com/acbart/waltz. (2021). Accessed:
2021-02-09.

Blackboard. 2020. Blackboard Learning Management
System. (2020). https://www.blackboard.com/
teaching-learning/learning-management

CS SPLICE Curriculum Materials Working Group .
2021. Curriculum Materials Working Group.
https://cssplice-cm.github.io/. (2021). Accessed:
2021-02-09.

CS SPLICE PEML Working Group . 2021. PEML.:
Programming Exercise Markup Language.
https://cssplice.github.io/peml/. (2021). Accessed:
2021-02-09.

Desire2Learn. 2020. Brightspace LMS For Higher
Education. (2020).
https://www.d21.com/higher-education/ Section:
Adaptive Learning.

Stephen H. Edwards, Jiirgen Borstler, Lillian N. Cassel,
Mark S. Hall, and Joseph Hollingsworth. 2008.
Developing a Common Format for Sharing
Programming Assignments. SIGCSE Bull. 40, 4 (Nov.
2008), 167-182. DOI:
http://dx.doi.org/10.1145/1473195.1473240

Gitlab, Inc. 2021. Gitlab.
https://https://about.gitlab.com/. (2021). Accessed:
2021-02-09.

[8] Nazire Burcin Hamutoglu, Orhan Gemikonakli, Ibrahim
Duman, Ali Kirksekiz, and Mubin Kiyici. 2020.
Evaluating students experiences using a virtual learning
environment: satisfaction and preferences. Educational
Technology Research and Development 68, 1 (Feb.
2020), 437-462.DOI:
http://dx.doi.org/10.1007/s11423-019-09705-z

[9

—

Instructure. 2018. Learning Management System | LMS
| Canvas by Instructure. (Dec. 2018).

https://www.canvaslms.com/

[10] Mackenzie Leake and Colleen M. Lewis. 2017.
Recommendations for Designing CS Resource Sharing
Sites for All Teachers. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science
Education (SIGCSE ’17). Association for Computing
Machinery, New York, NY, USA, 357-362. DOI:
http://dx.doi.org/10.1145/3017680.3017780

[11] National Center for Women and Information Technology
. 2020. EngageCSEdu. https://www.engage-csedu.org.
(2020). Accessed: 2021-02-09.

[12] Nick Parlante. 2020. Nifty Assignments.
http://nifty.stanford.edu/. (2020). Accessed:
2021-02-09.

[13] Phill Conrad. 2021. University of California Santa
Barbara CS Course Repository. https://github.com/
ucsb-cs-course-repos/ucsb-cs-course-repos.github.io.

(2021). Accessed: 2021-02-09.


https://github.com/acbart/waltz
https://www.blackboard.com/teaching-learning/learning-management
https://www.blackboard.com/teaching-learning/learning-management
https://cssplice-cm.github.io/
https://cssplice.github.io/peml/
https://www.d2l.com/higher-education/
http://dx.doi.org/10.1145/1473195.1473240
https://https://about.gitlab.com/
http://dx.doi.org/10.1007/s11423-019-09705-z
https://www.canvaslms.com/
http://dx.doi.org/10.1145/3017680.3017780
https://www.engage-csedu.org
http://nifty.stanford.edu/
https://github.com/ucsb-cs-course-repos/ucsb-cs-course-repos.github.io
https://github.com/ucsb-cs-course-repos/ucsb-cs-course-repos.github.io

	Introduction
	Minimum Workflow Support
	Toward a Complete Workflow
	Further Work and Conclusion
	References 

