Runestone’s Question Bank, Exam Generator, and Log Data

Barbara J. Ericson
University of Michigan, School of Information
Ann Arbor, Michigan, USA
barbarer @umich.edu

ABSTRACT

Runestone is an open-source platform for interactive ebooks.
It serves over 120,000 registered learners and has an average
of 350,000 page views a day. There are ebooks for secondary
computer science as well as for undergraduate computing
courses: CS1, CS2, data science, web programming, and
more. The platform supports executable and editable exam-
ples in Python, Java, C, C++, HTML, JavaScript, Processing,
and SQL. It also includes code visualizers/steppers for Python,
Java, and C++ code. Runestone supports instructional ma-
terial: text, videos, and images as well as typical practice
problems with immediate feedback such as multiple-choice,
fill-in-the-blank, and matching questions. Runestone also has
unusual features such as audio tours of code, clickable ar-
eas, adaptive Parsons problems, and a unique practice tool.
This paper highlights the new exam generation feature which
also allows A/B testing, explains the log data that is collected
and is available for analysis, and describes plans for future
development including making the smart content reusable.

Author Keywords
on-line learning, ebooks, adaptive learning, practice tools,
intelligent ebooks, Parsons problems, ACOS, LTI

INTRODUCTION

Brad Miller started creating the Runestone ebook platform
in 2011 with a goal of “democratizing textbooks for the 21st
century”. Brad wanted ebooks to be free so that everyone
could learn computer science, even if they could not afford
a $200 textbook. The first feature he added to the platform
was the ability run and edit code. He also integrated a code
visualizer / stepper [4]. Over the years many more typical
interactive features with immediate feedback were added in-
cluding multiple-choice questions, fill-in-the blank questions,
and matching.

UNIQUE INTERACTIVE FEATURES

Runestone has several unique interactive features, some of
which (clickable area problems, adaptive Parsons problem,
and a spaced practice tool) we have reported on before [2, 8,

Seventh SPLICE Workshop at SIGCSE 2021 “CS Education Infrastructure
for All III: From Ideas to Practice”, SPLICE’21, March 15-16, 2021, Virtual
Event

Bradley N. Miller
Luther college / Founder Runestone Interactive
Minneapolis, Minnesota, USA
brad @runestoneinteractive.com

3]. Due to space constraints we will only discuss the newest
features here, which are the ability to generate exams from a
question bank and A/B testing.

EXAM GENERATOR

The exam generator allows an instructor to specify one or
more questions for an exam that utilize a question bank. Ques-
tions are selected from the question bank and presented to the
student as they take the exam. Taken to its extreme this could
provide a unique exam for each student. However an instructor
can also specify a list of equivalent questions and the exam
generator will pick a random question for each student.

To create an exam the instructor writes questions using the
. selectquestion:: directive in Runestone. This direc-
tive supports the following options:

e :fromid: id1l, id2, id3, ... Each id refers to an ex-
isting question in the question bank. Runestone randomly
selects an id for each student.

e :proficiency: profl, prof2, ... Ifthequestionsin
the question bank are tagged with a proficiency (compe-
tency), Runestone will randomly select a question from the
question bank that is tagged with the specified proficiency.

e :min_difficulty: 1.25 Specifies the minimum diffi-
culty for the questions to be selected.

e :max_difficulty: 5.0 Specifies the maximum diffi-
culty for the questions to be selected.

e :not_seen_ever: Ensures that the student is only pre-
sented with a question they have not seen before.

e :autogradable: Only selects questions that can be graded
automatically.

:ab: Allows A/B testing and is followed by a unique ex-
periment id

Currently the questions in the Runestone question bank come
from two sources: book authors and instructors. The entire
corpus of questions is available from a GitHub repository and
contains approximately 19,000 questions covering a range of
topics including introductory programming in Python, Java,
and C++, web programming, and database design. Each ques-
tion is stored in a file in restructuredText format. However,
there are many duplicate questions and many questions that
were contributed by instructors that may not be ready for use.
A database of questions can be populated by simply running a
runestone build from the top level of the QuestionBank folder.

Each question includes metadata to facilitate question selec-
tion by the exam generator. The metadata includes difficulty,
topic, proficiency (competency) tested, the number of students
that have attempted the question, the number of students that
got the question correct, the percentage of students that got
the question correct on their first try, and the mean number of
attempts for the student to get the question correct.

For questions such as multiple choice and fill-in-the-blank we
compute a difficulty score on a scale from 1 to 5 by re-scaling
the percent of students that got the question correct on their
first try. For coding questions with unit tests we re-scale the
mean attempts to get the question correct to the 1 to 5 scale.

Currently we use the topic meta data as a proxy for the com-
petency that the question tests. Since Runestone books use
a common chapter / subchapter structure we use the chapter
label and subchapter label to form a topic. For example, the
chapter on conditionals has a subchapter labeled LogicalOp-
erators. Using the select question directive one can specify
a proficiency of "conditionals/logicaloperators". This is not
meant to be a long term solution for competencies. It would
likely be better to have a formal taxonomy and tag each ques-
tion with one or more competencies from the taxonomy.

A/B TESTING

A/B testing allows researchers to run experiments in which
learners are automatically assigned to one of two conditions
(A or B). This is accomplished with the selectquestion direc-
tive and ab option followed by a unique experiment id. The
instructor must provide two questions in the fromid option for
each quesion in the experiment. The first question will be used
for condition A and the second for condition B.

LOG DATA

Runestone logs every user interaction in the ebook. Each
log entry includes the date and time (timestamp), user iden-
tifier (sid), event, data about the event (act), item identifier
(div_id), course identifier (course_id), base course identifier
(base_course), chapter, subchapter, and institution identifier
(anon_institution). It logs page views, answers to any of the
practice problems, video plays, audio tour plays, and every
code edit/run and block move in a Parsons problem. Part of a
log file is shown in Figure 1. All of the code that is executed
or saved is also available in a separate log.

Researchers can request an anonymous log file from Brad
Miller or wait for a snapshot of the anonymized Runestone
log file data base to be integrated into the SPLICE data set

FUTURE WORK

Our plans for future work include further development of the
question bank and exam generation system, making anony-
mous log file data and the question bank available to the
SPLICE research community, support for both in-person and
remote Peer Instruction, and new research on Parsons prob-
lems.

The question bank is in its infancy and needs a team of editors
to eliminate or improve bad questions. We need to develop a
taxonomy of competencies for Python, Java and C/C++ and

timestamp sid event act div_id

8/21/17 23:54 27 Audio Line-by-line Tour Icfcl
8/21/17 23:54 27 Audio play Icfel
8/21/17 23:54 27 Audio closeWindow Icfel
8/21/17 23:57 23 video play ants
8/21/17 23:57 25 mChoice answer:3:correct q2.2 1
8/21/17 23:57 25 mChoice answer:1:correct q2.2 2
8/21/17 23:58 25 mChoice answer:3:no q2.2 3
8/21/17 23:59 25 mChoice answer:0:correct q2_2 3
8/22/17 0.02 26 page view index.html
8/22/17 0:03 26 page view JavaBasics/\
8/22/17 0:03 25 activecode edit Icfel
8/22/17 0:04 25 parsonsMove start|0_1_0-5_0-6_0-2_3_0-4 0|-|c0 thirdClass
8/22/17 0:04 25 parsonsMove move|5_0-6_0-2_3 0-4_0|0_1 _0|c0 thirdClass
8/22/17 0:04 25 parsonsMove move|5_0-6_0-4 0|0_1_0-2_3 0|c0 thirdClass
8/22/17 0:04 25 parsonsMove move|5_0-6_0|0_1_0-2_3 0-4 0|c0 thirdClass
8/22/17 0:04 25 parsonsMove move|6_0|0_1_0-2_3_0-4_0-5_0|c0 thirdClass
8/22/17 0:04 25 parsonsMove move|-|0_1_0-2_3 0-4_0-5_0-6 0|c0 thirdClass
8/22/17 0:04 25 parsons correct|-|0_1_0-2_3_0-4_0-5_0-6_0|cl-s thirdClass

Figure 1. Part of a log file from Runestone that has been anonymized.

then annotate the questions with the appropriate competencies.
We also need to build visualization tools to help instructors
verify that their exams are covering the competencies. Re-
search also needs to be done on students perceptions of the
fairness of competency-based generated exams.

We will make anonymous log files available to the SPLICE
community and will also develop a representation of the ques-
tions in the question bank using JSON that is compatible with
ACOS to encourage question reuse.

We will also leverage the question bank to add support for
both in-person and remote Peer Instruction. In Mazur’s Peer
Instruction students read material before lecture and take an
assessment based on the reading either before or at the begin-
ning of lecture [1]. In lecture the instructor displays a difficult
multiple-choice question that contains distractors (incorrect
answers) based on common misconceptions. The students
answer the question individually (vote), then discuss their
answers with neighboring students (peers), and then answer
(vote) individually again. Finally, the instructor shows the
result of the two votes and leads a discussion of the question
[1]. Peer Instruction improves student engagement, retention,
and learning over traditional lecture [7, 6, 1]. We will use the
question bank to identify good questions for Peer Instruction.
A good question for Peer Instruction is one that about 40-60%
of the students get wrong on the first vote [5]. If students
are remote and synchronous they will use a chat-style inter-
face to discuss the Peer Instruction question. If students are
asynchronous we plan to serve them the saved chat from a
synchronous learner.

An end of course student survey from a course taught by
Ericson during Fall 2019 that used both Parsons problems and
write code problems as lecture exercises found that 78.3% of
students agreed or strongly agreed that they found the mixed-
up code (Parsons) problems in lecture practice helpful for
learning. However, 36.2% of the students would rather write
the code from scratch than solve a Parsons problem. We are
adding the ability to choose to write the equivalent code with
unit tests rather than a presented Parsons problem. We have
also been exploring ways to cluster student written code in
order to generate Parsons problems.

REFERENCES

(1]

(2]

(3]

(4]

(5]

Catherine H Crouch and Eric Mazur. 2001. Peer
instruction: Ten years of experience and results.
American journal of physics 69, 9 (2001), 970-977.

Barbara Ericson. 2019. An Analysis of Interactive
Feature Use in Two Ebooks. In iTextbooks@ AIED.
4-17.

Barbara J Ericson and Bradley N Miller. 2020.
Runestone: A Platform for Free, On-line, and Interactive
Ebooks. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education.

1012-1018.

Philip J Guo. 2013. Online python tutor: embeddable
web-based program visualization for cs education. In
Proceeding of the 44th ACM technical symposium on
Computer science education. 579-584.

Nancy Kober. 2015. Reaching students: What research
says about effective instruction in undergraduate science
and engineering. National Academies Press.

[6] Leo Porter, Dennis Bouvier, Quintin Cutts, Scott

[7

[8

—

—_—

Grissom, Cynthia Lee, Robert McCartney, Daniel
Zingaro, and Beth Simon. 2016. A multi-institutional
study of peer instruction in introductory computing. In
Proceedings of the 47th ACM Technical Symposium on
Computing Science Education. 358-363.

Cynthia Taylor, Jaime Spacco, David P Bunde, Andrew
Petersen, Soohyun Nam Liao, and Leo Porter. 2018. A
multi-institution exploration of peer instruction in
practice. In Proceedings of the 23rd Annual ACM
Conference on Innovation and Technology in Computer
Science Education. 308-313.

Iman YeckehZaare, Paul Resnick, and Barbara Ericson.
2019. A Spaced, Interleaved Retrieval Practice Tool that
is Motivating and Effective. In Proceedings of the 2019
ACM Conference on International Computing Education
Research. 71-79.

	Introduction
	Unique Interactive Features
	Exam Generator
	A/B Testing
	Log Data
	Future Work
	References

