
ProgSnap 2 — A standardized
representation for programming process
data
Austin Cory Bart, University of Delaware
Brett Becker, University College Dublin
Luke Gusukuma, Virginia Tech
David Hovemeyer, Johns Hopkins University
Ayaan Kazerouni, Virginia Tech
Andrew Petersen, University of Toronto
Thomas Price, North Carolina State University
Kelly Rivers, Carnegie Mellon University

Document information

Specification Version: 6

Specification Date: 31 July 2019

Specification Status: Alpha
This specification is reasonably complete, and we invite those interested in using it to do so, but
there is a high probability that details will change in the future, and there is a possibility that
some future changes could be non-backwards-compatible.

Change Log
Version 6, 31 July 2019:

● README.txt is required; clarified expectations for its contents
● Clarification of when Project.* events should be generated
● Added File.Copy event type
● Added ProjectID optional column
● Eliminated FilePath column, clarified the purpose and meaning of the CodeStateSection

column

● Added DestinationCodeStateSection column (for specifying target of File.Rename and
File.Copy events)

● Guidance on how SourceLocation should be interpreted for Edit.* events
● Clarification of meaning of Score column, and changed from required to recommended
● Separated Optional columns into Recommended and Event-Specific columns
● Changed CodeStateSection to be required for File.*, Compile, and Compile.* events
● Added a new recommended column, LoggingErrorID, for tracking errors in data
● Merged the EditTrigger column into the EventInitiator column, and updated

EventIniator's enum values.
● Required that all Interventions have an EventIntiator value
● Changed ProgramInput and ProgramOutput from Required to Recommended for

Compile events
● Clarified the description of Intervention events
● Allow hierarchical organization of code states when using the Directory format
● Deduplication of code states in the Directory format is recommended, but not required

Version 5, 17 April 2019: Added Real data type and Score/ExtraCreditScore columns.

Version 4, 29 March 2019: First Alpha version.

Table of contents
Document information

Specification Version: 6
Specification Date: 31 July 2019
Specification Status: Alpha
Change Log

Table of contents

Introduction

Dataset representation
File formats
Data types

ID
Integer
Real
Boolean
Timestamp
Timezone
Enum

String
NonemptyString
URL
RelativePath
SourceLocation

README.txt
Dataset Metadata

Version
IsEventOrderingConsistent
EventOrderScope
EventOrderScopeColumns
CodeStateRepresentation

Link tables
The main event table

Column Headers
Required Columns

EventType
EventID
SubjectID
ToolInstances
CodeStateID

Recommended Optional Columns
Order
ServerTimestamp
ServerTimezone
ClientTimestamp
ClientTimezone
CourseID
CourseSectionID
TermID
AssignmentID
AssignmentIsGraded
ProblemID
ProblemIsGraded
Attempt
ExperimentalCondition
TeamID
LoggingErrorID

Event-Specific Columns

ParentEventID
SessionID
ProjectID
ResourceID
CodeStateSection
DestinationCodeStateSection
EventInitiator
EditType
CompileResult
CompileMessageType
CompileMessageData
SourceLocation
ExecutionID
TestID
ExecutionResult
Score
ExtraCreditScore
ProgramInput
ProgramOutput
ProgramErrorOutput
InterventionCategory
InterventionType
InterventionMessage

CodeStates
CodeState Directory

Table Format
Directory Format
Git Format
Open Questions

Introduction
This document describes ProgSnap 2, a standardized representation for “programming
snapshot” data. Its intended purpose is to facilitate analysis of datasets representing student
work on programming exercises and assignments.

Data that can be represented as part of a ProgSnap 2 dataset includes (but is not limited to):

● File contents and changes to file contents (edits)
● Compilation events
● Compiler errors and warnings
● Program execution events
● Test execution events and test results
● Interventions such as generated hints

ProgSnap 2 is based on the “DATASTAND Group Notes” document created by John Stamper,
Stephen Edwards, Andrew Petersen, Thomas Price, and Ian Utting at ICER 2017.

Dataset representation
A ProgSnap 2 dataset will include two types of files: metadata files and payload files. Payload
files contain data originating directly from student work. Metadata files contain data describing
student work. For example, the main event table is a metadata file.

The dataset consists of a primary directory that contains three main subdirectories: CodeStates,
LinkTables, and Resources. The primary data files, MainTable.csv and DatasetMetadata.csv,
along with the descriptive README.txt file, are located in the primary directory, while additional
files are located in their respective subdirectories.

File formats
The primary file format used for metadata files is CSV (comma-separated values.)

All CSV-format metadata files in a ProgSnap 2 dataset are required to conform to RFC 4180. In
addition, they are required to be encoded using the UTF-8 character set, and they are required
to include a header row. So, the effective MIME type for a CSV-format metadata file is

text/csv; charset=utf-8; header=present

Note that there is no requirement that the columns of a metadata file occur in any particular
order. The mandatory header will be used to specify the column ordering.

Data types
The following data types are used in metadata files.

https://tools.ietf.org/html/rfc4180
https://tools.ietf.org/html/rfc3629

ID
An ID value is an identifier for any data that can be referenced, such as events, sessions,
courses, etc. An ID value is formed by any sequence of Unicode characters, up to a maximum
length of 1000 characters.

Two ID values are equal if they consist of exactly the same sequence of characters. No
ordering is implied by ID values: the only meaningful comparison between two ID values is for
equality or inequality.

Although an ID value can be any sequence of characters (up the the specified maximum
length), we recommend that data providers avoid using whitespace characters other than space
(U+0020), and in general refrain from using “unusual” character codes such as combining
characters, non-printing characters, emojis, etc. However, data consumers should be prepared
to accept any arbitrary character sequence as an ID value.

The intent of allowing free-form strings as ID values is to permit them to be self-descriptive: for
example, “Fall 2018” could be used as a value in the TermID column.

Integer
An Integer value is a textual base 10 representation of an integer in the range -263..263-1
inclusive.

Real
A Real value is a textual base 10 representation of a real number. Three formats are allowed:
integer, decimal, and scientific notation.

A value in the integer format consists of a sequence of one or more decimal digits. The value
may be preceded by an optional minus sign (“-”) to indicate a negative value.

A value in the decimal format consists of a sequence of one or more decimal digits, followed by
a decimal point (“.”), followed by a sequence of zero or more decimal digits. The value may be
preceded by an optional minus sign (“-”) to indicate a negative value.

A value in the scientific notation format is a mantissa, followed by “E” or “e”, followed by an
exponent. The mantissa has the form of either an integer or decimal as described above. The
exponent starts with either plus (“+”) or minus (“-”), followed by a sequence of one or more
decimal digits. If the mantissa is negative, then the overall value is negative.

Examples:

Example Format Comments

123 Integer

-123 Integer Negative value

1.23 Decimal

-1.23 Decimal Negative value

1.23e+3 Scientific notation Equal to 1230

1.23e-3 Scientific notation Negative exponent; equal to 0.00123

-1.23e+3 Scientific notation Negative value; equal to -1230

-1.23e-3 Scientific notation Negative value, negative exponent;
equal to -0.00123

Real values should be restricted to the range allowed for IEEE 754 double precision values.
Note that NaN (not a number) and +Inf/-Inf (positive and negative infinity) are not allowed as
Real values.

The representations of Real values are intended to be directly parsed as floating-point values by
most programming languages, runtime libraries, and statistical computing applications.

Boolean
A Boolean value is either true or false.

Timestamp
A Timestamp value is an ISO 8601 datetime value specifying a date and local time, without time
zone. Example:

2018-09-07T08:41:02

Timezone
A Timezone value is an ISO 8601 time zone offset. Example:

-0500

https://standards.ieee.org/standard/754-1985.html
https://www.iso.org/iso-8601-date-and-time-format.html
https://www.iso.org/iso-8601-date-and-time-format.html

Enum
An Enum (enumerated) value is one of a predefined set of possible values. For the main event
table columns, the specific set of possible values will be listed in the “Enum values” section of
the column description.

String
A String value is a sequence of 0 or more characters.

NonemptyString
A NonemptyString value is a sequence of 1 or more characters.

URL
A URL value is either

● A valid URL conforming to RFC 3986
● An “internal” URL specifying a file or directory local to the dataset

The format for an “internal” URL is

file:relativePath

where relativePath is the relative path of a file within the ProgSnap 2 dataset, meaning a
sequence of path components, separated by slash (“/”) characters, terminating in a file or
directory. Internal URLs will typically specify the path to a file in the Resources directory. As an
example, the following internal URL might designate a course description document:

file:Resources/CS101_Description.pdf

RelativePath
A RelativePath identifies a specific file or resource within a CodeState. Its value should be a
sequence of path components, separated by slash (“/”) characters, terminating in a file. A
RelativePath should not contain any occurrences of the “.” or “..” path components (which in
Unix-like systems indicate the current and parent directories.)

As an example, assume that a CodeState (collection of files and resources associated with an
event) has a subdirectory called “src” with files “foo.c” and “bar.c”. The RelativePath values
identifying those files within the CodeState would be

src/foo.c

https://tools.ietf.org/html/rfc3986

and

src/bar.c

respectively.

SourceLocation
A SourceLocation value indicates a location in a source code artifact. A SourceLocation starts
with either “Text:” or “Tree:”, followed by a sequence of one or more integer values separated by
colon (‘:’) characters.

For text-based source languages, a SourceLocation starts with “Text:”, which will be followed by
either 1 or 2 integer values, where the first value indicates a line number (1 being the first line in
the source file), and the (optional) second value indicates a character position within the
identified line (1 being the position of the first character in the line.) For example, the
SourceLocation

Text:13

would indicate line 13 of a source file, and the SourceLocation

Text:13:6

would indicate the sixth character of line 13 of a source file.

Note that a single SourceLocation represents a single “point” in the source code. To represent
a range in code, two SourceLocations should be used; one for the beginning of the range, and
one for the end.

For non-text-based languages (e.g., block languages) where the source representation can be
mapped to a tree structure, the SourceLocation starts with “Tree:”, and is followed by a
colon-separated sequence of integers describing a path from the root of the tree to the feature
of interest. The empty path indicates the root, so the SourceLocation

Tree:

would identify the root node. Integers in the path represent the ordinal of a child node, with 1
being the first child, 2 being the second, etc. So, the SourceLocation

Tree:1:3

would indicate the third child of the first child of the root node.

README.txt
Every ProgSnap 2 dataset is required to have a plain text file named README.txt in its top-level
directory. This file must contain contact information (at least name and email address) for
someone who can answer questions about the dataset. In addition to the required contact
information, it is strongly recommended that README.txt contain the following information (if
applicable):

● High-level overview of the dataset and how it was collected
● Information about the context (e.g., course) in which the dataset was collected
● Relevant papers
● Unique properties of the data
● How to interpret any columns with ambiguous values (e.g. CodeStateSelection)
● Details about tools used (to clarify the meaning of values used in the ToolInstances

column of the main event table)
● Details about user-defined columns, values, and data types (those with names beginning

with “X-”)

We encourage producers of datasets to consider including contextual information recommended
by csedresearch.org.

Dataset Metadata
Every ProgSnap 2 dataset is required to have a metadata file named

DatasetMetadata.csv

The purpose of this metadata file is to describe the features of the dataset as a whole. The file
has two columns named Property and Value. Each row in the table indicates the value of
one property. Each property has a default value; any property not explicitly defined in
DatasetMetadata.csv is assumed to have the default value. The following properties are
defined.

Version
Description: This property specifies the current version of the ProgSnap 2 standard that these
files adhere to. This allows the standard to change over time.

Datatype: Integer

Current Value: 6

https://csedresearch.org/reporting-activities/

IsEventOrderingConsistent
Description: This property specifies whether the events in the main event table are
predominantly ordered (within the scope specified by the EventOrderScope property) according
to a single, globally-consistent clock, such that the ordering of the events in the same scope can
(largely) be assumed to reflect their actual temporal order according to that clock. Datasets
originating from distributed systems (including client/server systems) might not have a single
clock, in which case the value of this property should be false.

Note that data consumers should be prepared to handle anomalies in event ordering, even if
this property value is set to true.

Values: true or false

Default value: false

EventOrderScope
This property specifies the scope of Order column values within the dataset. The possible
values are Global, Restricted, and None. When the value is Global, the Order column values
are intended to be meaningful to determine the order of all events (globally) in the dataset.
When the value is Restricted, Order column values are only comparable between events with
identical values for all of the columns specified by the EventOrderScopeColumns property.
When the value is None, the Order column values should never be assumed to determine an
ordering for any events; in other words, the events are not ordered.

Values: Global, Restricted, None

Default value: None

EventOrderScopeColumns
This property specifies the main event table columns which define the scope of meaningful
comparisons of Order column values. This property must be set to a non-empty value if the
EventOrderScope property has the value “Restricted”. (This property has no significance if
EventOrderScope is not “Restricted”.) (This property has no significance if EventOrderScope is
not “Restricted”.) The value of this column is a semicolon-separated list of main event table
column names.

As an example, if a dataset only has meaningful Order column values for events sharing the
same TermID, CourseID, AssignmentID, and SubjectID values, then EventOrderScope should
be “Restricted”, and the value of this property should be:

TermID;CourseID;AssignmentID;SubjectID

This would indicate that there is a meaningful order for events from one student attempting a
given assignment, but that we cannot (or should not) meaningfully order the events of multiple
students with respect to each other (e.g., because these represent independent sets of events),
and we cannot order a student’s events between different assignments.

There is no significance to the order of the specified columns within this list.

Value: a semicolon-separated list of main event table column names, or empty if the
EventOrderScope property is not Restricted

Default value: the default value is the empty string, i.e., no columns are specified

CodeStateRepresentation

Description: This property specifies which CodeState representation is used by the dataset.
This property must be specified using one of the legal values listed below.

Values: Table, Directory, Git

Link tables
In some cases, data providers will want to link ID values or combinations of ID values with
resources specifying additional information about the entity or entities identified by the ID
value(s). Some examples include:

● Linking SubjectID values to documents containing more information about the subject,
such as demographic information

● Linking CourseID values to course catalog descriptions
● Linking CourseID/TermID pairs to course webpages with information about specific

offerings of a course

Link tables are the mechanism for providing links to resources. Note that all resource files
should be stored in the Resources/ directory., while all link tables are stored in the LinkTables/
directory.

The name of a link table is constructed as follows:

1. From each column containing an ID to use as a key, strip “ID” from the end (for example,
“CourseID” would become “Course”)

2. Concatenate the transformed column names in lexicographical order to form a single
combined name

3. Prepend “LinkTables/”
4. Append “.csv”

So, for example, the link table for CourseID values would be called
LinkTables/Course.csv. As another example, the link table for CourseID/TermID pairs
would be called LinkTables/CourseTerm.csv.

Link tables are CSV files. The columns of a link table are, at a minimum

● The columns for the IDs: for example, CourseID and TermID for the
LinkTables/CourseTerm.csv link table

● A column called “URL” containing a URL linking to the resource specified by the ID or
IDs. This column is optional if additional columns are added, as described below.

Link tables may contain other columns in addition to the mandatory columns mentioned above,
if needed. These columns should start with the prefix “X-”, to clarify that they are user-defined.

The main event table
The core component of a ProgSnap 2 dataset is a metadata file known as the main event table.
It is a CSV file named

MainTable.csv

Each row of the main event table represents an event.

Column Headers
This section describes the required, optional, and event-specific columns of the main event
table. Note that additional columns may be added by the user as needed; however, users are
encouraged to use pre-defined columns where possible.

Columns in the main event table are not required to be in any particular order. Data consumers
must use the header of the main table to discover how the columns are ordered for a particular
dataset.

Required Columns

● EventType
● EventID

● SubjectID
● ToolInstances
● CodeStateID

Optional Columns

● Order
● ServerTimestamp
● ServerTimezone
● ClientTimestamp
● ClientTimezone
● CourseID
● CourseSectionID
● TermID
● AssignmentID
● AssignmentIsGraded
● ProblemID
● ProblemIsGraded
● Attempt
● ExperimentalCondition
● TeamID
● LoggingErrorID

Event-Specific Columns

● ParentEventID
● SessionID
● ProjectID
● ResourceID
● CodeStateSection
● DestinationCodeStateSection
● EventInitiator
● EditType
● CompileResult
● CompileMessageType
● CompileMessageData
● SourceLocation
● ExecutionID
● TestID
● ExecutionResult
● Score
● ExtraCreditScore
● ProgramInput
● ProgramOutput
● ProgramErrorOutput

● InterventionCategory
● InterventionType
● InterventionMessage

Required Columns
This section documents columns that are required, meaning that they must be present and
nonempty for all rows.

EventType
Datatype: Enum

Enum values: Session.Start, Session.End, Project.Open, Project.Close, File.Create, File.Delete,
File.Open, File.Close, File.Rename, File.Edit, File.Focus, Compile, Compile.Error,
Compile.Warning, Submit, Run.Program, Run.Test, Debug.Program, Debug.Test,
Resource.View, Intervention, X-*

Description: Every line logged in a dataset must be associated with a specific event, where
events can be categorized as one of several possible types. Users are encouraged to apply the
built-in enum values whenever possible, but if a new event type is necessary, the coder may
define a new enum type beginning with the string “X-”. The metadata of the associated dataset
should define what the new EventTypes mean.

EventType value Description

Session.Start Marks the start of a work session.

Session.End Marks the end of a work session.

Project.Open Indicates that a project was opened.

Project.Close Indicates that a project was closed due to an explicit user or system
action. Data consumers should be prepared to handle cases where
Project.Open is not terminated by an explicit Project.Close.

File.Create Indicates that a file was created.

File.Delete Indicates that a file was deleted.

File.Open Indicates that a file was opened.

File.Close Indicates that a file was closed.

File.Save Indicates that a file was saved.

File.Rename Indicates that a file was renamed.

File.Copy Indicates that a file was copied.

File.Edit Indicates that the contents of a file were edited.

File.Focus Indicates that a file was selected by the user within the user
interface.

Compile Indicates an attempt to compile all or part of the code.

Compile.Error Represents a compilation error and its associated diagnostic.

Compile.Warning Represents a compilation warning and its associated diagnostic.

Submit Indicates that code was submitted to the system.

Run.Program Indicates a program execution and its associated input and/or
output.

Run.Test Indicates execution of a test and its associated input and/or output.

Debug.Program Indicates a debug execution of the program and its associated input
and/or output.

Debug.Test Indicates a debug execution of a test and its associated input and/or
output.

Resource.View Indicates that a resource (typically a learning resource of some type)
was viewed.

Intervention Indicates that an intervention such as a hint was done.

X-* Any event type beginning with “X-” is a user-defined event type, for
events not covered by the categories above.

Note that each event type may have a set of columns that are required for that specific event.
These are listed in the Event-Specific Columns section, with the relevant events listed in the
Required for and Recommended for sections in each column description, and summarized in
this table. In general, data providers should strive to provide as much information as possible,
and avoid leaving data values empty unnecessarily.

EventID
Datatype: ID

https://docs.google.com/spreadsheets/d/1ZCfp8tjMsNTDyXshHV6FZqej6WZbFvinDJOaYC_fpNs/edit#gid=0

Description: Every event must have an ID value that is distinct from (not equal to) all other
events in the main event table.

SubjectID
Datatype: ID

Description: An ID representing the subject associated with the event. Whenever possible, the
SubjectID should represent a single individual (i.e., a student.) A SubjectID could represent a
group of individuals (i.e., a team) if the event truly originates from the group as a whole and is
not directly associated with a single individual within the group.

SubjectID values and TeamID values are considered to be in the same namespace. For events
where SubjectID and TeamID have the same value, it means that the event is ascribed to a
team as a whole rather than any specific member of the team.

When it is not known who the subject associated with an event is, the special ID “UNKNOWN”
should be used. This ID should not be used for regular subjects, and should be treated as
missing information during analysis.

ToolInstances
Datatype: string

Description: a string detailing the tool(s) associated with the event. This should include any
compilers, IDEs, and external tools used during the event. Tools must be separated by
semicolons. For example, a submission event using the CloudCoder tool might be represented
by the string “Python 3.6.5; CloudCoder 0.1.4”. Versions should be included when known, but
can be omitted when less information is available. Examples of tools that should be included:

- Language compiler or interpreter version
- IDE version (this may include both a client and server version)
- Static analyzers
- Feedback/hint tools
- Student Models

In cases where multiple external tools are used, only the external tools which actively
contributed to the event should be included in the string, to add clarity.

CodeStateID
Datatype: ID

Description: Each event should contain a pointer to the current state of the student’s codebase.
If the code has not changed since the previous event, the previous CodeStateID may be
reused. More information about how to represent CodeStates can be found further below in the
document.

Recommended Optional Columns
This section describes the columns of the main event table that are optional (meaning they may
or may not be present for any particular dataset) but which are recommended for all event types
where the value of the column is known. It is possible that only a subset of events (rows) will
have a nonempty value for an optional column when the data is not known for all events.

Order
Datatype: Integer

Description: This value indicates a “best guess” chronological event order, as determined by the
data provider, within the scope specified by the EventOrderScopeColumns dataset metadata
property. Each event within the specified scope must have a distinct Order value. There is no
requirement that Order values start with any specific minimum value, nor is there a requirement
that Order values always increase by increments of one.

Because Order values are only guaranteed to be unique within the scope defined by
EventOrderScopeColumns, the ordering of events in different scopes is unspecified.

In general, there is no single “true” order of events. For example, for systems that collect both
server and client timestamps, there is no guarantee that these will be consistent. However, for
many types of analysis, especially those that will be implemented using a “streaming” approach
(where events are processed in sequence and only minimal context is directly kept in memory at
any instant), it is useful to have a default ordering of events that can be expected to represent
the “true” chronology with some reasonable degree of accuracy. The Order column is intended
to provide that default ordering.

ServerTimestamp
Datatype: Timestamp

Description: A ServerTimestamp value indicates the time when an event was logged on a server
system. In general, it is expected that servers will have clocks that are (to a reasonable degree)
accurately synchronized with global time standards (e.g., using NTP), although this cannot be
guaranteed. Also, in cases where there are multiple servers, their clocks may not be completely
synchronized with each other.

ServerTimezone
Datatype: Timezone

Description: A ServerTimezone value indicates the timezone (offset from UTC) to which the
ServerTimestamp value is relative. Combined with the ServerTimestamp, it indicates the
specific instant in time when an event was recorded on a server.

ClientTimestamp
Datatype: Timestamp

Description: A ClientTimestamp value indicates the time when an event was registered on a
client system (generally, the system being used directly by the student), as reported by the
client system. In general, ClientTimestamp values can be assumed to provide an accurate
chronology of events within a single session (as indicated by the SessionID value), and usually
can be meaningfully compared between sessions for the same student (SubjectID), but they
might not be accurately synchronized with global time standards.

ClientTimezone
Datatype: Timezone

Description: A ClientTimezone value indicates the timezone to which a ClientTimestamp value is
relative. Combined with the ClientTimestamp value, it identifies the precise instant in time when
an event was recorded on a client system, with the caveat that clocks on client systems might
not be accurately synchronized with global time standards.

CourseID
Datatype: ID

Description: Students are usually associated with a specific course that they are learning in.
This course must be given an ID that is shared across all students enrolled in the course, but
distinct from different courses in the same dataset. We define courses to be different when they
teach different content (e.g., CS1 vs CS2). Note that a course which takes place over several
terms with different students should be given the same ID across all terms; the datasets will be
distinguished by their TermIDs.

We recommend that CourseIDs be at least somewhat anonymized, to avoid making student
data identifiable.

CourseSectionID
Datatype: ID

Description: Courses are often split up into smaller sections of students who primarily interact
with each other and a specific TA. If applicable, each section should be given a distinct ID
(unique from other sections in the given course and other courses). CourseSections should not
share IDs across terms.

We recommend that CourseSectionIDs be at least somewhat anonymized, to avoid making
student data identifiable.

TermID
Datatype: string

Description: The term in which the course took place. Can be written as needed, but we
recommend the format ‘<Semester> <Year>’; for example, ‘Spring 2018’.

AssignmentID
Datatype: ID

Description: CodeStates are often associated with a specific assignment that is composed of
one or more programming problems. Each unique assignment must be given a distinct ID from
other assignments in the associated course and other courses. If an assignment is identical to
an assignment in a previous term of the course or another course, they should be given the
same ID, but any changes in the assignment should result in a changed ID.

If the CodeState represents free-form student work not associated with a specific assignment or
problem, this value should be empty. Stand-alone problems also do not need to be associated
with assignments.

AssignmentIsGraded
Datatype: Boolean

Description: This value indicates whether or not the assignment specified by the AssignmentID
was graded (true) or ungraded (false).

ProblemID
Datatype: ID

Description: The identifier for the programming problem associated with the event. Each unique
problem must have its own identifier that is distinct from other identifiers in the same column that
correspond to different problems. If a record specifying a ProblemID also specifies an
AssignmentID, it means that the problem is part of the specified assignment. There is no
requirement that problems are associated with an assignment: for example, a standalone
practice problem might not be considered to be part of an assignment.

ProblemIsGraded
Datatype: Boolean

Description: This value indicates whether or not the problem specified by the ProblemID was
graded (true) or ungraded (false).

Attempt
Datatype: Integer

Description: If a student attempts a problem more than once, this value is used to identify which
attempt they’re on. It should start at 1, then increase by 1 on each following attempt.

ExperimentalCondition
Datatype: String

Description: If this data was logged as part of an experiment, this column can be used to specify
the experimental condition that the event took place in. Condition names must be consistent for
events in the same condition, and (if possible) distinct between different experiments. This can
be accomplished by assigning each experiment in the dataset a distinct name. An example
condition string is “02/18 Parsons Problem Study: Control”; this establishes the condition
(control case), the study content (parsons problems), and when the study took place (February
2018).

TeamID
Datatype: ID

Description: This value indicates the identity of a team. There are two possible meanings of
TeamID:

● If the TeamID value is different than the SubjectID value, it means that the SubjectID
designates a single individual, and the TeamID value identifies the team the individual
belongs to.

If the TeamID value is the same as the SubjectID value, it means that the SubjectID designates
a team, and that the event is ascribed to the team as a whole rather than any individual member
of the team. When this value is used, a Link Table should be created to map the TeamID to a
list of SubjectIDs, when known. This should be done with two columns: the first column the
TeamID, the second a single SubjectID, where the number of rows the TeamID appears in
maps to the number of SubjectIDs.

LoggingErrorID
Datatype: ID

Description: Logging errors are an inevitable part of the data collection process. If a data
collector finds that an error occurred during the logging process, they should leave the data in
its original state, but annotate all erroneous data with IDs, where each ID corresponds to a
specific logging error event. Further information about the error can then be provided in a link
table (which should include the ID, error type, and an explanation).

Note that logging errors can come in many forms, including corrupted/lost data, server
downtime, and tool errors that result in incorrect feedback. We define a logging error to be
anything that results in the log not accurately representing the true state of the world.

Event-Specific Columns
This section describes the columns of the main event table that are associated with specific
event types and therefore may not be used in every row of the dataset. An event-specific
column only needs to be included in a dataset if an event which requires it appears in some row
in the dataset as well. Each event-specific column description includes Required-for and
Recommended-for sections.

The Required-for section lists event types for which the column must have a meaningful value.
In other words, a data consumer can safely assume that the value of the column is meaningful
for all of the Required-for event types that appear in the dataset. Note that “meaningful” does
not necessarily imply nonempty: it is possible, for example, that an empty string could be a
meaningful value depending on the purpose of the column.

The Recommended-for section lists event types for which data providers should provide a
meaningful value if possible, but where a meaningful value is not absolutely required. If a
Recommended-for section is not included, the column may still be used for any event types
where the column data is relevant.

A table matching EventTypes to suggested and required columns can be found here.

ParentEventID
Datatype: ID

Description: Certain events are hierarchical, where multiple child events might be associated
with a single parent event. In these cases, the parent event should be referenced in this column
by its EventID value.

Note that this column is still under design; more ‘required for’ event types will be added with
time, after the format has been tested.

Required for: Compile.* events (must reference parent Compile event).

https://docs.google.com/spreadsheets/d/1ZCfp8tjMsNTDyXshHV6FZqej6WZbFvinDJOaYC_fpNs/edit#gid=0

Recommended for: Any X-* events where it is desirable to indicate a relationship to a parent
event.

SessionID
Datatype: ID

Description: A session is generally defined as a distinct period of time during which a student is
interacting with a tool/program. Sessions are somewhat ill-defined and may vary across
datasets. Session IDs must be unique across subjects and across distinct sessions. This ID may
be the EventID of the SessionStart event that initiated the session, or it may be derived
independently.

Required for: Session.* events

ProjectID
Datatype: ID

Description: A project is a collection of source files that can be opened and closed (in Project.*
events). Note that a project may be distinct from an assignment or problem. For example, one
assignment might extend another, in which case the student will load the same project and
continue working on it.

Data producers should only generate Project.* events and ProjectID values if the underlying
data source has an explicit concept of “project”.

Required for: Project.* events

ResourceID
Datatype: ID

Description: Often students access resources while working on problems. Example resources
include API documentation, online textbooks, and demo videos. In a dataset which logs student
access to resources, each resource must be assigned a distinct ID. If resources are not
changed across terms, their IDs should be reused.

Required for: Resource.View events

CodeStateSection
Datatype: RelativePath

Description: A CodeStateSection value names a single file or resource within a CodeState
which is specifically associated with the event. Examples:

● In a File.Create event, the CodeStateSection identifies the file created
● In a Compile.Error event, the CodeStateSection identifies the source file in which the

compilation error occurs

Note that for events where there is both a “source” file/resource and a “destination”
file/resource, the CodeStateSection value indicates the “source”. For example, for File.Copy
and File.Rename events, the CodeStateSection names the “original” file. (Note that in the case
of File.Rename events, the CodeStateSection value identifies a file or resource in the previous
CodeState.)

Note that a CodeStateSection may only refer to a single file. Cases where multiple resources
are accessed or modified at the same time (such as using “Save All” to save all files) should be
represented as multiple events, each with its own distinct CodeStateSection.

Also note that CodeStateSections should not be used for CodeStates in the Table format, as all
table data is contained in the same file.

Required for: File.*, Compile, and Compile.* events where the CodeState is not in the Table
format

DestinationCodeStateSection
Datatype: RelativePath

Description: For events associated with two files or resources — a “source” and a “destination”
— the DestinationCodeStateSection value specifies the destination resource. For example, for
File.Copy and File.Rename events, the DestinationCodeStateSection value specifies the “new”
file or resource.

Note that this column should only contain a nonempty value if the CodeStateSection column
contains a nonempty value.

Required for: File.Copy and File.Rename events

EventInitiator
Datatype: Enum

Enum values: UserDirectAction, UserIndirectAction, ToolReaction, ToolTimedEvent,
InstructorDirectAction, InstructorIndirectAction, TeamMemberDirectAction,
TeamMemberIndirectAction, X-*

Description: Events are typically performed by either the user, the tool, or the instructor. When
known, this column should specify which one instigated the event.

Note that user, instructor, and team members can initiate actions either directly or indirectly. A
direct action is one the person purposefully makes (like typing or editing a program with mouse
clicks); an indirect action is one that is caused by a user action, but not done directly by the user
(like when a user accepts an autocomplete recommendation and the text is filled in).

Further information is provided in the following table:

EventInitiator value Description

UserDirectAction Indicates that the user directly instigated the action.

UserIndirectAction Indicates that the user indirectly instigated an action.

ToolReaction Indicates that a tool caused the edit as a reaction to something
the user did.

ToolTimedEvent Indicates that a tool caused the edit as part of a time-based
event (such as automatically saving every five minutes).

InstructorDirectAction Indicates that the instructor directly caused the action,
potentially remotely.

InstructorIndirectAction Indicates that the instructor indirectly caused the action,
potentially remotely.

TeamMemberDirectAction Indicates that a team member directly caused the event; for
example, if two students are pair-programming on a shared
screen.

TeamMemberIndirectAction Indicates that a team member indirectly caused the event; for
example, if two students are pair-programming on a shared
screen.

X-* Any initiator beginning with “X-” is a user-defined type, for
special initiators not covered by the categories above.

When a tool initiated the event, the column ToolInstances should include that tool for clarity.

Required for: Intervention events

Recommended for: File.* events, Compile events

EditType
Datatype: Enum

Enum values: GenericEdit, Insert, Delete, Replace, Move, Paste, Undo, Redo, Refactor, Reset,
X-*

Description: This value indicates the type of edit which caused the file to change. Specific
values are described in the table below.

EditType value Description

Insert Indicates that one or more characters or values have been added.

Delete Indicates that one or more characters of values have been deleted.

Replace Indicates that one or more characters or values have been replaced
by new characters/values.

Move Indicates that one or more characters or values have been moved to
a new location.

Paste Indicates that one or more characters or values have been pasted
into the program.

Undo Indicates that the most recent edit not of an undo/redo type was
undone.

Redo Indicates that the most recent edit that had been undone was
re-done.

Refactor Indicates that the program has been refactored in some way.

Reset Indicates that the program has been reset to its start state.

GenericEdit Any generic edit that can not be described by the edits listed above.
We recommend that this is not used for special edits; those should
be classified as X-* edits.

X-* Any event type beginning with “X-” is a user-defined event type, for
special edit events not covered by the categories above.

Required for: File.Edit events

CompileResult
Datatype: Enum

Enum values: Success, Warning, Error

Description: Compile events can either result in an error, a warning, or a general success.

Required for: Compile events

CompileMessageType
Datatype: String

Description: The type/ID of compile message provided. If no error or warning was given, the
string “Success” should be used. The types of errors and warnings used will otherwise vary by
language; for example, a Python compile message type might be a ‘SyntaxError’ or an
‘IndentationError’.

Required for: Compile.* events

CompileMessageData
Datatype: String

Description: The specific compiler message shown to the student.

Required for: none

Recommended for: Compile.* events

SourceLocation
Datatype: SourceLocation

Description: A SourceLocation value represents a location or region within a source file,
associated with a compiler diagnostic, static analysis warning, or other message about program
source. It can also describe the location of an edit in source code during File.Edit events. Note
that due to the large number of ways file contents could change as a result of a File.Edit event,
the SourceLocation value associated with a File.Edit event (if any) should be considered to be a
“hint” regarding the location of the change(s) represented by the event. The true change
corresponding to a File.Edit event is indicated by the changes to the event’s CodeState relative
to the previous CodeState.

Required for: Compile.* events

Recommended for: File.Edit events

ExecutionID
Datatype: ID

Description: This ID value is used to group Run.Test events that were part of the same overall
test execution. For example, if multiple unit tests were executed, resulting in one Run.Test
event for each unit test, all of the Run.Test events in the group should share a common
ExecutionID.

If the code execution is associated with a submission, then the Submit event should have an
ExecutionID value, and the associated Run.Test, Debug.Test, and/or Run.Program events
should share the same ExecutionID value.

For consistency, this ID value may also be specified for Run.Program events.

Required for: Run.Test and Debug.Test events

Recommended for: Submit events (if applicable), Run.Program and Debug.Program events

TestID
Datatype: ID

Description: An ID indicating which test case is associated with the event. If desired, a link table
may map IDs to further information about the individual test cases. Note that TestID values may
be human-readable: for example, the names of JUnit tests could be used as TestID values.

Required for: Run.Test and Debug.Test events

ExecutionResult
Datatype: Enum

Enum values: Success, Timeout, Error, TestFailed

Description: Run.Program events can result in Success (the program runs fully to completion),
Timeout (the program’s execution is interrupted by the user or the system), or Error (the
program execution is terminated by a compiler or runtime error).

Run.Test events can result in Success (the test passes), Timeout (the test failed to complete in
the allotted time), Error (the test failed due to a fatal runtime exception), or TestFailed (the test
produces the incorrect output). Note that assertion errors should be classified as TestFailed, not
Error.

Required for: Run.* and Debug.* events

Score
Datatype: Real

Description: A Score value ranges between 0.0 and 1.0, and indicates the normalized degree of
correctness of the submitted code with respect to a specific test (in the case of a Run.Test
event) or with respect to all tests and correctness criteria (in the case of a Submit event),
excluding extra credit criteria.

A completely incorrect test result or submission should be assigned a score of 0.0, and a
completely correct test result or submission should be assigned a score of 1.0. If a test
result/submission is partially incorrect, it may either have a number in the range [0.0, 1.0) or
may be set to 0.0 automatically; this should be specified in the README. In general, it is
expected that

1. A Run.Test event will have a Score of 1.0 if the ExecutionResult is Success, and 0.0
otherwise

2. A Submit event will have a Score that is the average (possibly weighted) of the Score
values of the Run.Test events associated with the Submit event (i.e., those having the
same ExecutionID value)

In some sense Score values are redundant, because they could be inferred from analyzing
Run.Test events. However, for many types of analysis, having a single Score value directly

associated with a Submit event is highly valuable, and data providers are strongly encouraged
to include Score values.

Note that while a Score could be the basis of an assigned grade, there is no implication that a
Score is necessarily a grade. It is simply intended to capture the normalized degree of
correctness of submitted code.

Note also that Run.Test events and potentially even Submit events could omit the Score value if
they are intended exclusively as extra credit. Also, events can omit the Score value if it is not
possible for a score to be calculated immediately (as is the case for creative or manually graded
problems). When a manual grade is provided, an EarnedGrade Intervention should be used to
log the grade.

Required for: none

Recommended for: Submit, Run.* and Debug.* events

ExtraCreditScore
Datatype: Real

Description: An ExtraCreditScore value ranges between 0.0 and 1.0, and indicates the degree
to which a single test (in the case of Run.Test events) or submission (in the case of Submit
events) satisfies extra credit criteria. This column should not contain any value for Run.Test and
Submit events that have no extra credit criteria.

Required for: none

Recommend for: Submit, Run.*, and Debug.* events that are intended at least partially as extra
credit

ProgramInput
Datatype: URL

Description: Programs are often provided with input at the beginning of a run or test. The
ProgramInput value specifies the URL which records the program input. There are two
possibilities for the resource identified by the URL:

1. If the URL refers to a file, the file’s contents are the program input. This possibility is
intended to handle the case where the program is receiving input via its standard input
channel (stdin in C, System.in in Java, etc.)

2. If the URL refers to a directory, the directory contains one or more files that constitute
the program’s input. This possibility is intended to handle the case where the program is
receiving input from some combination of files and standard input. The naming and
meaning of these files is unspecified; data producers are encouraged to use descriptive
names.

ProgramInput and ProgramOutput are all listed as recommended, not required, for Run.*
events. However, data collectors are strongly encouraged to provide information on the
input/output whenever possible. These values should only be left blank when it is impossible to
present the data directly (for example, if the output is an interactive animation that cannot be
stored statically).

Required for: none

Recommended for: Run.* and Debug.* events

ProgramOutput
Datatype: URL

Description: Programs often produce output at the end of a run or test. The ProgamOutput value
specifies the URL which records the program output. The URL will typically refer to an “internal”
file within the dataset’s Resources directory. Note that ProgramOutput is intended to capture
the “standard” output channel of the program, i.e., stdout in C, cout in C++, System.out in
Java, etc.

ProgramInput and ProgramOutput are all listed as recommended, not required, for Run.*
events. However, data collectors are strongly encouraged to provide information on the
input/output whenever possible. These values should only be left blank when it is impossible to
present the data directly (for example, if the output is an interactive animation that cannot be
stored statically).

Required for: none

Recommended for: Run.* and Debug.* events

ProgramErrorOutput
Datatype: URL

Description: Programs often produce error output at the end of a run or test. The
ProgamErrorOutput value specifies the URL which records the program’s error channel output.

The URL will typically refer to an “internal” file within the dataset’s Resources directory. Note
that ProgramErrorOutput is intended to capture the “error” output channel of the program, i.e.,
stderr in C, cerr in C++, System.err in Java, etc.

Required for: none

Recommended for: Run.* and Debug* events which produced non-empty error output

InterventionCategory
Datatype: Enum

Enum values: Feedback, Hint, CodeHighlight, CodeChange, EarnedGrade, X-*

Description: An Intervention event is an interaction with the subject initiated during the
programming process; for example, showing the students a targeted feedback message when
they fail a specific test case. We include common intervention categories here, but new ones
with names starting with the prefix “X-” may be used. Common interventions should be
recommended for inclusion in future versions of ProgSnap 2.

Note that Compile and Run events are not interventions; these events are ubiquitous enough
that they have been given their own event types.

Required for: Intervention events

InterventionType
Datatype: String

Description: System-level information about the type of intervention being performed. For
feedback, this might be the type of error or code state that was detected; for CodeHighlight, this
might be the starting and ending coordinates of the highlighted code. This can be organized
freely by the logger, but the format should be consistent within datasets, and should state the
information as succinctly as possible.

Required for: Intervention events

InterventionMessage
Datatype: String

Description: The actual intervention message shown to the student, when applicable. If no
message is shown but a visual effect occurs, the effect should be described (possibly using a
dataset-specific coding scheme).

Required for: Intervention events

CodeStates

CodeStates are used to represent student code in the ProgSnap 2 format. Unlike the main
table, CodeState representation can and should vary across different datasets, based on the
type of work being stored. However, we recommend that developers represent their code using
the following guidelines, to increase shareability.

CodeState Directory
The CodeState directory should hold the files containing the code data, where files can be
referenced by ID in the main table. How that data is stored varies based on the type of data that
has been logged. We consider varying types of data along the following dimensions:

- Program size (small or large)
- Number of files per CodeState (one or multiple)
- Code format (text or other)
- Size of dataset

The recommended representation format can then be decided based on the factors mentioned
above:

- The Git Format might be most appropriate for large datasets and datasets with
snapshots consisting of large numbers of files

- The Directory Format might be most appropriate for medium size datasets and
datasets where the snapshots contain a small number of files (including single files)

- The Table Format might be most appropriate for datasets where each snapshot is a
single file of a relatively small size and the source code representation is text-based

Producers of ProgSnap 2 datasets must use one of the following CodeState representations. In
general, it is left up to producers to decide which representation is most appropriate
(considering the factors described above.) Producers should specify the
CodeStateRepresentation property of the dataset’s DatasetMetadata.csv to Git, Directory,
or Table as appropriate.

Consumers of ProgSnap 2 datasets should be prepared to work with any of the following
CodeState representations.

All code data should be stored in the dataset’s CodeStates directory.

Table Format
In the Table Format, all CodeStates are stored in a single CSV file for ease of access. This CSV
should be named CodeStates.csv (in the CodeStates directory), and should contain at
least two columns: CodeStateID and Code. We strongly recommend that developers generate
the CSV in RFC 4180 format using a standard library, to avoid parsing problems.

The ID column should hold each code state’s ID, which should follow the ID datatype described
by the main table. The code column should hold the complete program text referenced by the
ID. The whole code text should be included, not just a diff.

If there are multiple useful representations of a code state, additional columns can be used to
store these as well. For example, for a block-based language, the Code column might store the
original XML project file that the programming environment can load, while a second JSON
column contains a JSON representation of the AST, allowing the data consumer to skip the step
of parsing the XML. A further Pseudocode column could contain a human-readable version of
the code.

Directory Format
In the Directory Format, each CodeState is stored in a different subdirectory within the dataset’s
CodeStates directory, where the name of the directory is the CodeState ID. The directory then
contains all files associated with the CodeState in their full (non-diff) form. Each CodeState
directory may have an internal directory structure, and files may be located anywhere within the
internal directory structure.

Care must be taken to ensure that CodeStateID values are legal directory names for common
operating systems. For this reason, it is recommended that Directory Format CodeStateID
values consist of the characters a-z, A-Z, 0-9, underscore (“_”), hyphen (“-”), and forward slash
(“/”). When a slash (“/”) character appears in a CodeStateID, it is considered to be a path
separator, such that the CodeStateID describes a path to the specific CodeState directory within
the dataset’s overall CodeStates directory. Note that a CodeStateID value should not begin
with a slash (“/”), since that would indicate an absolute path. Because a ProgSnap2 dataset
could have a large number of code states, it is recommended that data producers use a
hierarchical organization to avoid the CodeStates directory having an unreasonably large
number of immediate subdirectories.

It is recommended (but not required) that directories representing code states should be
deduplicated: that is, it should not be the case that two directories representing code states

have identical contents. If a unique code state occurs across multiple events or students (for
example, the starter code for an assignment), it should be referred to by the same CodeStateID
in each event where it occurs.

Git Format
In the Git Format, a single Git repository contains all of the dataset’s CodeStates, with each
CodeState being represented as a commit.

In this representation, the CodeStates directory should be a bare Git repository (i.e., one
created with the git init --bare command.) Each CodeState ID should name a commit in
the Git repository. It is strongly recommended for dataset producers to use parent/child
relationships between commits to represent code histories. For example, consider a sequence
of edits made by one student working on one project. Assume there are CodeStates C1, C2,
C3, etc., representing the edit sequence. Each CodeState is a commit in the Git repository. In
order to model the connections between the CodeStates in the sequence, C1 should be C2’s
parent, C2 should be C3’s parent, etc.

Open Questions
- Should information about a CodeState’s language be included in the CodeState, or in

the main table?
- Should more structured formats (like an AST) be stored in the CodeState, or generated

by a script later on?

